Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA Computational Math Seminar Decoupled weak Galerkin finite element method for Maxwell's equations
Decoupled weak Galerkin finite element method for Maxwell's equations
Organizers
Pipi Hu , Xin Liang , Zhiting Ma , Hamid Mofidi , Axel G.R. Turnquist , Li Wang , Fansheng Xiong , Shuo Yang , Wuyue Yang
Speaker
Wenya Qi
Time
Thursday, October 30, 2025 9:00 AM - 10:00 AM
Venue
Online
Online
Zoom 928 682 9093 (BIMSA)
Abstract
We consider Maxwell’s equations in a decoupled formulation by introducing Lagrange multipliers and obtain the magnetic field given the known electric field. The proposed formulation combines the decoupled weak form with the four equations of Maxwell’s model. The decoupled system reduces the computational complexity by restricting the degrees of freedom of the electric or magnetic fields. We present the construction of mixed weak Galerkin finite element methods for electric field and magnetic field, utilizing backward Euler time discretization in fully discrete schemes. We analyze the error estimate of the electric and magnetic field in the energy norm. Finally, we present numerical results for the proposed schemes in three-dimensional space to validate our theory.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060