Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA Computational Math Seminar A mass and charge conservative fully discrete scheme for a 3D diffuse interface model of the two-phase inductionless MHD flows
A mass and charge conservative fully discrete scheme for a 3D diffuse interface model of the two-phase inductionless MHD flows
Organizers
Zhen Li , Xin Liang , Zhi Ting Ma , Hamid Mofidi , Li Wang , Fan Sheng Xiong , Shuo Yang , Wu Yue Yang
Speaker
Xiaorong Wang
Time
Thursday, March 13, 2025 3:00 PM - 4:00 PM
Venue
A3-4-312
Online
Zoom 787 662 9899 (BIMSA)
Abstract
In this paper, we study the phase field model on a three-dimensional bounded domain for a twophase, incompressible, inductionless magnetohydrodynamic (MHD) system, which is important for many engineering applications. To efficiently and accurately solve this multi-physics nonlinear system, we present a fully discrete scheme that ensures both mass and charge conservation. Making use of the discrete energy law, we demonstrate that the fully discrete scheme satisfies unconditional energy stability. Subsequently, by utilizing the Leray-Schauder principle, we establish the existence of solutions to the discrete scheme. As both mesh size and time step size tend to zero, we prove that the discrete solutions converge to the weak solution of the continuous problem. Finally, several three-dimensional numerical experiments, including the accuracy test, the bubble coalescence, the drop deformation and the Kelvin-Helmholtz (KH) instability, are performed to validate the reliability and efficiency of the proposed numerical scheme.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060