Learning seminar on Black Hole thermodynamics
Location: Jingzhai 105, Tsinghua University
Goal: To gain an up-to-date understanding about the field of Black Hole thermodynamics.
Please fill out the following form if you are interested to be a speaker: https://forms.gle/FcsSwXbXcCLoBxPG8
Plan
1. Week 1-2: The four Laws of Black Hole Mechanics: Bardeen-Carter-Hawking [2]. Area Theorem[6]. Wald Review [16]
2. Week 3-4: Hawking Radiation [7] and Unruh effect [13]. Also [15, chapter 5, 6, 7].
3. Week 5: Black Hole entropy from microstates counting [12]
4. Week 6-7: Information Paradox [5], Page curve [11], Uhruh-Wald information loss[14], Mathur review [10]
5. Week 8-11: Holographic principle and AdS/CFT. Maldacena [9], Witten [17]
6. Week 12-14: Quantum Information theory and Entanglement entropy. Witten note [18]. Replica Trick[3], Replica Wormhole [1], Casini-Huerta note [4]
7. Week 15-16: JT/SYK. Kitaev Lecture [8]
Other resources
• MIT open course by Hong Liu: https://ocw.mit.edu/courses/8-821-string-theory-and-holographic-duality-fall-2014/video_galleries/video-lectures/
• Recorded lecture by Tom Hartman http://www.hartmanhep.net/topics2021/
• Recorded lecture by Edward Witten https://phy.princeton.edu/academics/graduate-program/graduate-course-recordings
• Haag, Rudolf. Local quantum physics: Fields, particles, algebras. Springer Science & Business Media, 2012.
References
[1] Ahmed Almheiri et al. “The entropy of Hawking radiation”. In: Reviews of Modern Physics 93.3 (2021), p. 035002.
[2] James M Bardeen, Brandon Carter, and Stephen W Hawking. “The four laws of black hole mechanics”. In: Communications in mathematical physics 31 (1973), pp. 161–170.
[3] Pasquale Calabrese and John Cardy. “Entanglement entropy and conformal field theory”. In: Journal of physics a: mathematical and theoretical 42.50 (2009), p. 504005.
[4] Horacio Casini and Marina Huerta. “Lectures on entanglement in quantum field theory”. In: arXiv preprint arXiv:2201.13310 (2022).
[5] S. W. Hawking. “Breakdown of predictability in gravitational collapse”. In: Phys. Rev. D 14 (10 Nov. 1976), pp. 2460–2473. DOI: 10.1103/PhysRevD.14.2460. URL: https://link.aps.org/doi/10.1103/ PhysRevD.14.2460.
[6] Stephen W Hawking. “Gravitational radiation from colliding black holes”. In: Physical Review Letters 26.21 (1971), p. 1344.
[7] Stephen W Hawking. “Particle creation by black holes”. In: Communications in mathematical physics 43.3 (1975), pp. 199–220.
[8] Alexei Kitaev, Caltech and KITP, A simple model of quantum holography 1 and 2.
[9] Juan Maldacena. “The large-N limit of superconformal field theories and supergravity”. In: International journal of theoretical physics 38.4 (1999), pp. 1113–1133.
[10] Samir D Mathur. “The information paradox: a pedagogical introduction”. In: Classical and Quantum Gravity 26.22 (2009), p. 224001.
[11] Don N. Page. “Information in black hole radiation”. In: Phys. Rev. Lett. 71 (23 Dec. 1993), pp. 3743–3746. DOI: 10.1103/PhysRevLett.71.3743. URL: https://link.aps.org/doi/10.1103/PhysRevLett.71.3743.
[12] Andrew Strominger and Cumrun Vafa. “Microscopic origin of the Bekenstein-Hawking entropy”. In: Physics Letters B 379.1-4 (1996), pp. 99–104.
[13] W. G. Unruh. “Notes on black-hole evaporation”. In: Phys. Rev. D 14 (4 Aug. 1976), pp. 870–892. DOI: 10.1103/PhysRevD.14.870. URL: https://link.aps.org/doi/10.1103/PhysRevD.14.870.
[14] William G Unruh and Robert M Wald. “Information loss”. In: Reports on Progress in Physics 80.9 (2017), p. 092002.
[15] Robert M Wald. Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago press, 1994.
[16] Robert M Wald. “The thermodynamics of black holes”. In: Living reviews in relativity 4 (2001), pp. 1–44.
[17] Edward Witten. “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”. In: arXiv preprint hep-th/9803131 (1998).
[18] Edward Witten. “APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory”. In: Reviews of Modern Physics 90.4 (2018), p. 045003.
(Thanks Prof. Witten, Prof. Wald and especially Sia for help with the list)
Goal: To gain an up-to-date understanding about the field of Black Hole thermodynamics.
Please fill out the following form if you are interested to be a speaker: https://forms.gle/FcsSwXbXcCLoBxPG8
Plan
1. Week 1-2: The four Laws of Black Hole Mechanics: Bardeen-Carter-Hawking [2]. Area Theorem[6]. Wald Review [16]
2. Week 3-4: Hawking Radiation [7] and Unruh effect [13]. Also [15, chapter 5, 6, 7].
3. Week 5: Black Hole entropy from microstates counting [12]
4. Week 6-7: Information Paradox [5], Page curve [11], Uhruh-Wald information loss[14], Mathur review [10]
5. Week 8-11: Holographic principle and AdS/CFT. Maldacena [9], Witten [17]
6. Week 12-14: Quantum Information theory and Entanglement entropy. Witten note [18]. Replica Trick[3], Replica Wormhole [1], Casini-Huerta note [4]
7. Week 15-16: JT/SYK. Kitaev Lecture [8]
Other resources
• MIT open course by Hong Liu: https://ocw.mit.edu/courses/8-821-string-theory-and-holographic-duality-fall-2014/video_galleries/video-lectures/
• Recorded lecture by Tom Hartman http://www.hartmanhep.net/topics2021/
• Recorded lecture by Edward Witten https://phy.princeton.edu/academics/graduate-program/graduate-course-recordings
• Haag, Rudolf. Local quantum physics: Fields, particles, algebras. Springer Science & Business Media, 2012.
References
[1] Ahmed Almheiri et al. “The entropy of Hawking radiation”. In: Reviews of Modern Physics 93.3 (2021), p. 035002.
[2] James M Bardeen, Brandon Carter, and Stephen W Hawking. “The four laws of black hole mechanics”. In: Communications in mathematical physics 31 (1973), pp. 161–170.
[3] Pasquale Calabrese and John Cardy. “Entanglement entropy and conformal field theory”. In: Journal of physics a: mathematical and theoretical 42.50 (2009), p. 504005.
[4] Horacio Casini and Marina Huerta. “Lectures on entanglement in quantum field theory”. In: arXiv preprint arXiv:2201.13310 (2022).
[5] S. W. Hawking. “Breakdown of predictability in gravitational collapse”. In: Phys. Rev. D 14 (10 Nov. 1976), pp. 2460–2473. DOI: 10.1103/PhysRevD.14.2460. URL: https://link.aps.org/doi/10.1103/ PhysRevD.14.2460.
[6] Stephen W Hawking. “Gravitational radiation from colliding black holes”. In: Physical Review Letters 26.21 (1971), p. 1344.
[7] Stephen W Hawking. “Particle creation by black holes”. In: Communications in mathematical physics 43.3 (1975), pp. 199–220.
[8] Alexei Kitaev, Caltech and KITP, A simple model of quantum holography 1 and 2.
[9] Juan Maldacena. “The large-N limit of superconformal field theories and supergravity”. In: International journal of theoretical physics 38.4 (1999), pp. 1113–1133.
[10] Samir D Mathur. “The information paradox: a pedagogical introduction”. In: Classical and Quantum Gravity 26.22 (2009), p. 224001.
[11] Don N. Page. “Information in black hole radiation”. In: Phys. Rev. Lett. 71 (23 Dec. 1993), pp. 3743–3746. DOI: 10.1103/PhysRevLett.71.3743. URL: https://link.aps.org/doi/10.1103/PhysRevLett.71.3743.
[12] Andrew Strominger and Cumrun Vafa. “Microscopic origin of the Bekenstein-Hawking entropy”. In: Physics Letters B 379.1-4 (1996), pp. 99–104.
[13] W. G. Unruh. “Notes on black-hole evaporation”. In: Phys. Rev. D 14 (4 Aug. 1976), pp. 870–892. DOI: 10.1103/PhysRevD.14.870. URL: https://link.aps.org/doi/10.1103/PhysRevD.14.870.
[14] William G Unruh and Robert M Wald. “Information loss”. In: Reports on Progress in Physics 80.9 (2017), p. 092002.
[15] Robert M Wald. Quantum field theory in curved spacetime and black hole thermodynamics. University of Chicago press, 1994.
[16] Robert M Wald. “The thermodynamics of black holes”. In: Living reviews in relativity 4 (2001), pp. 1–44.
[17] Edward Witten. “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”. In: arXiv preprint hep-th/9803131 (1998).
[18] Edward Witten. “APS Medal for Exceptional Achievement in Research: Invited article on entanglement properties of quantum field theory”. In: Reviews of Modern Physics 90.4 (2018), p. 045003.
(Thanks Prof. Witten, Prof. Wald and especially Sia for help with the list)
Organizer
Date
11th September, 2024 ~ 22nd January, 2025
Location
Weekday | Time | Venue | Online | ID | Password |
---|---|---|---|---|---|
Wednesday | 16:00 - 18:00 | Online | ZOOM 02 | 518 868 7656 | BIMSA |