Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar On stacks of p-adic local shtukas
On stacks of p-adic local shtukas
Organizers
Hansheng Diao , Yueke Hu , Emmanuel Lecouturier , Cezar Lupu
Speaker
Ian Gleason
Time
Monday, March 18, 2024 10:00 AM - 11:00 AM
Venue
Shuangqing-C654
Online
Zoom 271 534 5558 (YMSC)
Abstract
A classical theorem of Riemann states that complex abelian varieties are classified by their singular homology together with the Hodge filtration. In 2012 Scholze and Weinstein propose a classification of $p$-divisible groups over the $p$-adic complex numbers using analogous linear algebraic data that we may call $p$-adic local shtukas. This development lead to the introduction and study of moduli spaces of $p$-adic local shtukas, which are shown in the Berkeley notes to be generalizations of Rapoport--Zink spaces. In this talk we discuss the v-stack of $p$-adic local and its relation to the moduli problem introduced in the Berkeley notes. We will also discuss two related theorems, the first one explains the relation between the $p$-adic local shtukas and BKF-modules in terms of sheafification. The second one states that stacks of $p$-adic local shtukas are Artin v-stack. The proof of both theorems rely on the theory of kimberlites, we will give an introduction to this theory in the form of a mini-course.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060