On stacks of p-adic local shtukas
组织者
刁晗生
, 胡悦科
, 埃马纽埃尔·勒库图里耶
,
凯撒·鲁普
演讲者
Ian Gleason
时间
2024年03月18日 10:00 至 11:00
地点
Shuangqing-C654
线上
Zoom 271 534 5558
(YMSC)
摘要
A classical theorem of Riemann states that complex abelian varieties are classified by their singular homology together with the Hodge filtration. In 2012 Scholze and Weinstein propose a classification of $p$-divisible groups over the $p$-adic complex numbers using analogous linear algebraic data that we may call $p$-adic local shtukas. This development lead to the introduction and study of moduli spaces of $p$-adic local shtukas, which are shown in the Berkeley notes to be generalizations of Rapoport--Zink spaces. In this talk we discuss the v-stack of $p$-adic local and its relation to the moduli problem introduced in the Berkeley notes. We will also discuss two related theorems, the first one explains the relation between the $p$-adic local shtukas and BKF-modules in terms of sheafification. The second one states that stacks of $p$-adic local shtukas are Artin v-stack. The proof of both theorems rely on the theory of kimberlites, we will give an introduction to this theory in the form of a mini-course.