Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > YMSC-BIMSA Quantum Information Seminar Towards Practical Simulation of Realistic Chemical Systems on Near-term Quantum Computers
Towards Practical Simulation of Realistic Chemical Systems on Near-term Quantum Computers
Organizer
Zheng Wei Liu
Speaker
Dingshun Lyu
Time
Friday, October 29, 2021 9:30 AM - 12:15 PM
Venue
JCY-1
Online
Tencent 953 7541 0477 (2024)
Abstract
At present, Moore's Law is gradually failing, and various new computing architectures are emerging one after another. Quantum computing is likely to be a revolutionary technology in the future and has recently exhibited great potentials in predicting chemical properties for various applications in drug discovery, material design, and catalyst optimization. However, quantum computing is in the era of noise intermediate-scale (NISQ), with the number of qubits up to (50-1000), limited coherence time, and gate fidelity. Progress has been made in simulating small molecules, such as LiH and hydrogen chains of up to 12 qubits, by using quantum algorithms such as variational quantum eigensolver (VQE). Yet, originating from limitations of the size and the fidelity of near-term quantum hardware, how to accurately simulate large realistic molecules remains a challenge. In this talk, I will present our work towards the larger scale and realistic chemistry simulation. I will also briefly discuss other theoretical research in quantum chemistry simulation, the experimental realization of mainstream quantum systems, and future research trends and difficulties.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060