Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > AMSS-YMSC-BIMSA Joint Seminar on Progress of Topology and Its Applications The Extended Persistent Homology Transform for Manifolds with Boundary
The Extended Persistent Homology Transform for Manifolds with Boundary
Organizers
Haibao Duan , Fei Han , Yong Lin , Jianzhong Pan , Guo-Wei Wei , Jie Wu , Kelin Xia , Shing Toung Yau , Chao Zhou
Speaker
Vanessa Robins
Time
Monday, November 28, 2022 11:00 AM - 12:30 PM
Venue
1120
Online
Zoom 518 868 7656 (BIMSA)
Abstract
The Persistent Homology Transform (PHT) is a topological transform introduced by Turner, Mukherjee and Boyer in 2014. Its input is a shape embedded in Euclidean space; then to each unit vector the transform assigns the persistence module ofthe height function over that shape with respect to that direction. The PHT is injective on piecewise-linear subsets of Euclidean space, and it has been demonstrably useful in diverse applications as it provides a landmark-free method for quantifying the distance between shapes. One shortcoming is that shapes with different essential homology (i.e., Betti numbers) have an infinite distance between them. The theory of extended persistence for Morse functions on a manifold was developed by Cohen-Steiner, Edelsbrunner and Harer in 2009 to quantify the support of the essential homology classes. By using extended persistence modules of height functionsover a shape, we obtain the extended persistent homology transform (XPHT) which provides a finite distance between shapes even when they have different Betti numbers. It may seem that the XPHT requires significant additional computational effort, but recent work by Katharine Turner and myself shows that when A is a compact manifold with boundary X, embedded in Euclidean space, the XPHT of A can be derivedfrom the PHT of X. James Morgan has implemented the required algorithms for 2-dimensional binary images as an R-package. This talk will provide an outline of our results and an illustration of their application to shape clustering.
Speaker Intro
Vanessa Robins is an associate professor in the Research School of Physics at the Australian National University. She develops theory and algorithmsfor the quantification of shape in data. Her major contributions include fundamental mathematical results for persistent homology, algorithm and software development for computing topological information from digital images, and their application to the characterisationof porous and granular materials.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060