北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > AMSS-YMSC-BIMSA拓扑及应用进展联合讨论班 The Extended Persistent Homology Transform for Manifolds with Boundary
The Extended Persistent Homology Transform for Manifolds with Boundary
组织者
段海豹 , Fei Han , Yong Lin , 潘建中 , 魏国卫 , 吴杰 , 夏克林 , 丘成栋 , Chao Zhou
演讲者
Vanessa Robins
时间
2022年11月28日 11:00 至 12:30
地点
1120
线上
Zoom 518 868 7656 (BIMSA)
摘要
The Persistent Homology Transform (PHT) is a topological transform introduced by Turner, Mukherjee and Boyer in 2014. Its input is a shape embedded in Euclidean space; then to each unit vector the transform assigns the persistence module ofthe height function over that shape with respect to that direction. The PHT is injective on piecewise-linear subsets of Euclidean space, and it has been demonstrably useful in diverse applications as it provides a landmark-free method for quantifying the distance between shapes. One shortcoming is that shapes with different essential homology (i.e., Betti numbers) have an infinite distance between them. The theory of extended persistence for Morse functions on a manifold was developed by Cohen-Steiner, Edelsbrunner and Harer in 2009 to quantify the support of the essential homology classes. By using extended persistence modules of height functionsover a shape, we obtain the extended persistent homology transform (XPHT) which provides a finite distance between shapes even when they have different Betti numbers. It may seem that the XPHT requires significant additional computational effort, but recent work by Katharine Turner and myself shows that when A is a compact manifold with boundary X, embedded in Euclidean space, the XPHT of A can be derivedfrom the PHT of X. James Morgan has implemented the required algorithms for 2-dimensional binary images as an R-package. This talk will provide an outline of our results and an illustration of their application to shape clustering.
演讲者介绍
Vanessa Robins is an associate professor in the Research School of Physics at the Australian National University. She develops theory and algorithmsfor the quantification of shape in data. Her major contributions include fundamental mathematical results for persistent homology, algorithm and software development for computing topological information from digital images, and their application to the characterisationof porous and granular materials.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060