Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA AG Seminar The cyclic Deligne conjecture and Calabi-Yau structures
The cyclic Deligne conjecture and Calabi-Yau structures
Organizers
Mao Sheng , Artan Sheshmani , Nan Jun Yang , Bei Hui Yuan
Speaker
Christopher Brav
Time
Thursday, November 16, 2023 4:00 PM - 5:00 PM
Venue
YMSC-Jingzhai-304
Online
Zoom 638 227 8222 (BIMSA)
Abstract
The Deligne conjecture, many times a theorem, states that for a dg category C, the dg endomorphisms End(Id_C) of the identity functor-- that is, the Hochschild cochains-- carries a natural structure of 2-algebra. When C is endowed with a Calabi-Yau structure, then Hochschild cochains and Hochschild chains are identified up to a shift, and we may transport the circle action from Hochschild chains onto Hochschild cochains. The cyclic Deligne conjecture states that the 2-algebra structure and the circle action together give a framed 2-algebra structure on Hochschild cochains. We establish the cyclic Deligne conjecture, as well as a variation that works for relative Calabi-Yau structures on dg functors D --> C, more generally for functors between stable infinity categories. We discuss examples coming from oriented manifolds with boundary, Fano varieties with anticanonical divisor, and doubled quivers with preprojective relation. This is joint work with Nick Rozenblyum.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060