Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA AG Seminar Quantum Schubert calculus from lattice models
Quantum Schubert calculus from lattice models
Organizers
Artan Sheshmani , Nanjun Yang , Beihui Yuan
Speaker
Leonardo Mihalcea
Time
Thursday, September 18, 2025 10:00 AM - 11:00 AM
Venue
A6-101
Online
Zoom 638 227 8222 (BIMSA)
Abstract
In geometry, the quantum K theory of Grassmannians is a ring with a product deforming the usual K theory product. In (mathematical) physics, it is the coordinate ring of an affine variety given by the Bethe Ansatz equations. I will discuss a dictionary between these two perspectives, with emphasis on geometric interpretations. In particular, the graphical calculus from a 5-vertex lattice model yields Pieri-type rules, to quantum K multiply Schubert classes by Hirzebruch lambda_y classes of tautological bundles. One may also construct eigenvectors of the previous quantum multiplication operators, called Bethe vectors, which quantize the usual classes of torus fixed points. I will discuss how the existence of these Bethe vectors leads to a theory of quantum equivariant localization for Grassmannians. This is joint work with V. Gorbounov and C. Korff, following earlier work with W. Gu, E. Sharpe, and H. Zou.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060