Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA Digital Economy Lab Seminar Signal-Adaptive Joint Graphical Model Learning via Dynamic Regularization
Signal-Adaptive Joint Graphical Model Learning via Dynamic Regularization
Organizers
Ruize Gao , Liyan Han , Zhen Li , Fei Long , Dongbo Shi , Ke Tang , Qi Zhang
Speaker
Zhifan Li
Time
Friday, November 28, 2025 3:00 PM - 4:00 PM
Venue
A3-2-303
Online
Zoom 435 529 7909 (BIMSA)
Abstract
联合估计多个图模型(即多个精度矩阵)已成为统计学领域的重要研究方向。与分别估计相比,联合估计能够利用多个图之间的共享结构,从而获得更为精确的结果。这种思想在经济学中同样具有重要意义,例如在多个地区、多个行业或多个市场条件下研究相互依赖关系时,不同系统之间往往既共享部分结构特征,又存在差异,联合估计能够更有效地捕捉这种“共性与异质性并存”的结构。

在本文中,我们提出了一种高效且无需调参的联合图模型估计方法,称为 MIGHT(Multi-task Iterative Graphical Hard Thresholding,多任务迭代图形硬阈值方法)。我们将联合模型重新表述为一系列按列分解的多任务学习问题,并通过基于硬阈值算子的迭代算法加以求解。
在理论方面,我们给出了该方法的非渐近误差界,并证明在适当的信号条件下,该方法能够实现选择一致性与改进的误差上界,并具有渐近正态性——这些性质在现有联合图模型估计文献中很少被深入探讨。通过数值模拟和真实的癌症基因表达 RNA-seq 数据分析,我们进一步验证了该方法的优越性能。更广泛地,我们的方法为跨系统、跨区域数据中的联合结构学习提供了一种可推广的工具,也为经济网络、区域联动效应等经济学问题的研究提供了新的建模思路。
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060