Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Differential Geometry Seminar Exponential volumes of moduli spaces of hyperbolic surfaces
Exponential volumes of moduli spaces of hyperbolic surfaces
Organizers
Kenji Fukaya , Lynn Heller , Sebastian Heller , Kotaro Kawai
Speaker
Zhe Sun
Time
Tuesday, April 8, 2025 2:45 PM - 4:30 PM
Venue
A3-4-301
Online
Zoom 815 762 8413 (BIMSA)
Abstract
Mirzakhani found a remarkable recursive formula for the volumes of the moduli spaces of the hyperbolic surfaces with geodesic boundary, and the recursive formula plays very important role in several areas of mathematics: topological recursion, random hyperbolic surfaces etc.
We consider some more general moduli spaces $M_S(K,L)$ where the hyperbolic surfaces would have crown ends and horocycle decorations at each ideal points. But the volume of the space $M_S(K,L)$ is infinite when S has the crown ends. To fix this problem, we introduce the exponential volume form given by the volume form multiplied by the exponent of a canonical function on $M_S(K,L)$.
We show that the exponential volume is finite. And we prove the recursion formulas for the exponential volumes, generalising Mirzakhani's recursions for the volumes of moduli spaces of hyperbolic surfaces. We expect the exponential volumes are relevant to the open string theory. This is a joint work with Alexander Goncharov.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060