Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Lynn Heller

Lynn Heller

     Professor    
Professor Lynn Heller

Group: Analysis and Geometry

Office: A3-4-208

Email: lynn@bimsa.cn

Research Field: Differential Geometry

CV

Biography


Lynn Heller studied economics at the FU Berlin and Mathematics at TU Berlin from 2003-2007 and obtained her PhD in mathematics from Eberhard Karls University Tübingen in 2012. Before joining BIMSA she was juniorprofessor at Leibniz University in Hannover.

For the period 2025-2028 Lynn Heller is serving as a member of the Committee on Electronic Information and Communication (CEIC) of the International Mathematical Union (IMU).

Research Interest


  • I aim at answering differential geometric questions arising in the study of minimal and constant mean curvature surfaces as well as (constrained) Willmore surfaces (in 3−dimensional space forms) by combining techniques from geometric analysis, integrable systems (e.g., Hitchin system) and algebraic geometry (e.g.,Higgs bundles and moduli spaces). Recently, we discovered a surprising connection to number theory, when alternating multiple zeta values naturally appeared in our computations.

Education Experience


  • 2020 -      Leibniz Universität Hannover      Positive interims evaluation of the Juniorprofessorship, equivalent to the German Habilitation.
  • 2009 - 2012      Eberhard Karls University Tübingen      Mathematics      Doctor
  • 2003 - 2007      Freie Universität Berlin      Business Administration      Master
  • 2003 - 2008      Technische Universität Berlin      Mathematics      Master

Work Experience


  • 2022 -      BIMSA      Professor
  • 2017 - 2022      Leibniz Universität Hannover      Juniorprofessor
  • 2014 - 2017      Eberhard Karls University Tübingen      Margarete von Wrangell fellow
  • 2013 - 2014      Eberhard Karls University Tübingen      Postdoc
  • 2007 - 2012      Eberhard Karls University Tübingen      Teaching assistant

Publication


  • [1] S. Charlton, L. Heller, S. Heller, M. Traizet, Minimal surfaces and alternating multiple zetas, arxiv:2407.07130 (2024)
  • [2] Indranil Biswas, Sorin Dumitrescu, Lynn Heller, Sebastian Heller, João Pedro dos Santos, On the monodromy of holomorphic differential systems, Int. Jour. Math. 35 no. 9, special volume in honor of Oscar Garcia-Prada 60th birthday (2024)
  • [3] Lynn Heller, Sebastian Heller, Fuchsian DPW potentials for Lawson surfaces, Geometriae Dedicata, 217(6), 101 (2023)
  • [4] Lynn Heller, Sebastian Heller, Martin Traizet, Area estimates of high genus Lawson surfaces via DPW, Journal of Differential Geometry, 124(2023), 1, 1-35
  • [5] I. Biswas, L. Heller, S. Heller, Holomorphic Higgs bundles over the Teichmüller space, arXiv:2308.13860 (2023)
  • [6] I. Biswas, S. Dumitrescu, L. Heller, S. Heller, On the existence of holomorphic curves in compact quotients of SL(2, C), arXiv:2112.03131 (2021)
  • [7] L Heller, S Heller, M Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere (with an appendix by Steven Charlton), arXiv preprint arXiv:2108.10214 (2021)
  • [8] I. Biswas, S. Dumitrescu, L. Heller, S. Heller, Holomorphic systems with Fuchsian monodromy (with an appendix by Takuro Mochizuki), arXiv:2104.04818 (2021)
  • [9] L. Heller, C. B. Ndiaye, First explicit constrained Willmore minimizers of nonrectangular conformal class, Adv. Math., 386(paper no. 107804), 47 Pages (2021)
  • [10] Heller Lynn , Ndiaye Cheikh Birahim, Candidates for non-rectangular constrained {W}illmore minimizers, J. Geom. Phys., 165, Paper No. 104221, 23 (2021)
  • [11] Heller Lynn, Generalized {W}hitham flow and its applications, Minimal Surfaces: Integrable Systems and Visualisation, 349, 131--146 (2021)
  • [12] Heller Lynn , Heller Sebastian , Ndiaye Cheikh Birahim, Isothermic constrained {W}illmore tori in 3-space, Ann. Global Anal. Geom., 60(2), 231--251 (2021)
  • [13] Heller Lynn , Heller Sebastian , Ndiaye Cheikh Birahim, Stability properties of 2-lobed {D}elaunay tori in the 3-sphere, Differential Geom. Appl., 79, Paper No. 101805, 14 (2021)
  • [14] Heller Lynn , Heller Sebastian, Higher solutions of {H}itchin's self-duality equations, J. Integrable Syst., 5(1), xyaa006, 48 (2020)
  • [15] L. Heller, S. Heller, M. Traizet, Loop group methods for the non-abelian Hodge correspondence on a 4-punctured sphere, arXiv:1907.07139 (2019)
  • [16] L. Heller, F. Pedit, Towards a constrained Willmore conjecture. Willmore energy and Willmore conjecture, Monogr. Res. Notes Math.(pp 119–138) (2018)
  • [17] Heller Lynn , Heller Sebastian , Schmitt Nicholas, Navigating the space of symmetric {CMC} surfaces, J. Differential Geom., 110(3), 413--455 (2018)
  • [18] L. Heller, Dirac tori, Differential Geometry and its Applications, 54, 122-128 (2017)
  • [19] Heller Lynn , Heller Sebastian, Abelianization of {F}uchsian systems on a 4-punctured sphere and applications, J. Symplectic Geom., 14(4), 1059--1088 (2016)
  • [20] L Heller, S Heller, N Schmitt, Exploring the space of compact symmetric CMC surfaces, arXiv preprint arXiv:1503.07838 (2015)
  • [21] Heller Lynn , Heller Sebastian , Schmitt Nicholas, The spectral curve theory for {$(k, l)$}-symmetric {CMC} surfaces, J. Geom. Phys., 98, 201--213 (2015)
  • [22] Heller Lynn, Constrained {W}illmore and {CMC} tori in the 3-sphere, Differential Geom. Appl., 40, 232--242 (2015)
  • [23] Equivariant constrained Willmore tori in the 3-sphere, Mathematische Zeitschrift, 278(3), 955-977 (2014)
  • [24] L. Heller, Constrained Willmore tori and elastic curves in 2-dimensional space forms, Communications in Analysis and Geometry 22 (2), 343 – 369, 22, 343–369 (2014)
  • [25] L. Heller, Constrained Willmore Hopf tori, Report/Mathematisches Forschungsinstitut Oberwolfach, 21 (2013)
  • [26] L. Heller, Equivariant Constrained Willmore Tori in S3, PhD Thesis (2012)

 

Update Time: 2025-05-20 15:34:26


Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060