Lynn Jing Heller
研究员团队: 分析和几何
办公室: A3-4-208
邮箱: lynn@bimsa.cn
研究方向: 微分几何、可积系统、代数几何
个人简介
Lynn Heller于2003-2008年在柏林工业大学学习经济学和在柏林工业大学学习数学,并于2012年在图宾根埃伯哈德卡尔斯大学获得博士学位。此后,她留在图宾根做博士后,直到2017年在汉诺威莱布尼茨大学获得初级教授职位。其在微分几何上有近 10 年的研究科研经历,特别是三维情况下的 constantmean-curvature (CMC)曲面和 constrained Willmore 曲面的微分几何问题,涵盖几何分析,可积系统,李代数,代数几何等多个领域。在国际重要期刊上发表论文 20 余篇,引用 100 余次,H 指数 6。在国际会议上受邀参与报告 20 余次。
研究兴趣
- I aim at answering differential geometric questions arising in the study of minimal and constant mean curvature surfaces as well as (constrained) Willmore surfaces (in 3−dimensional space forms) by combining techniques from geometric analysis, integrable systems (e.g., Hitchin system) and algebraic geometry (e.g.,Higgs bundles and moduli spaces). Recently, we discovered a surprising connection to number theory, when alternating multiple zeta values naturally appeared in our computations.
教育经历
- 2020 - 汉诺威大学 Positive interims evaluation of the Juniorprofessorship, equivalent to the German Habilitation.
- 2009 - 2012 蒂宾根大学 数学 博士
- 2003 - 2007 柏林自由大学 工商管理 硕士
- 2003 - 2008 柏林工业大学 数学 硕士
工作经历
- 2022 - 北京雁栖湖应用数学研究院 研究员
- 2017 - 2022 汉诺威大学 青年教授
- 2014 - 2017 蒂宾根大学 Margarete von Wrangell fellow
- 2013 - 2014 蒂宾根大学 博士后
- 2007 - 2012 蒂宾根大学 助教
出版物
- [1] S. Charlton, L. Heller, S. Heller, M. Traizet, Minimal surfaces and alternating multiple zetas, arxiv:2407.07130 (2024)
- [2] I. Biswas, L. Heller, S. Heller, Holomorphic Higgs bundles over the Teichmüller space, arXiv:2308.13860(2023)
- [3] Lynn Heller, Sebastian Heller, Martin Traizet, Area estimates of high genus Lawson surfaces via DPW, Journal of Differential Geometry, 124(2023), 1, 1-35
- [4] I. Biswas, J. Dos Santos, S. Dumitrescu, L. Heller, S. Heller. On the monodromy of holomorphic differential systems
- [5] L.Heller, S.Heller, M.Traizet. Loop group methods for the non-abelian Hodge correspondence on a 4-punctured sphere
- [6] L. Heller, Ch. B. Ndiaye. Candidates for non-rectangular constrained Willmore minimizers. J. Geom. Phys. volume 165, paper no. 104221, 35 pages, 2021.
- [7] L. Heller, S. Heller, Ch. B. Ndiaye. Stability properties of 2-lobed Delaunay tori in the 3-sphere. Differ. Geom. Appl. volume 79, paper no. 101805, 2021.
- [8] L. Heller, S. Heller, Ch. B. Ndiaye. Isothermic constrained Willmore tori in 3-space. Ann. Glob. Anal. Geom. volume 60, pp 231–251, 2021.
- [9] L. Heller, C. B. Ndiaye. First explicit constrained Willmore minimizers of nonrectangular conformal class. Adv. Math. volume 386, paper no. 107804, 47 pages, 2021.
- [10] L. Heller, Generalized Whitham Flow and its Applications. Minimal surfaces: Integrable Systems and Visualisation, Springer Proceedings in Mathematics & Statistics 349, pp 131–146, 2021.
- [11] L. Heller, S. Heller, Higher solutions of Hitchin’s self-duality equations. J. Int. Syst. volume 5, no. 1, xyaa006, 42 pages, 2020.
- [12] L. Heller, S. Heller, N. Schmitt Navigating the Space of Symmetric CMC Surfaces. J. Differ. Geom. volume 110, no. 3, pp 413–455, 2018.
- [13] L. Heller, F. Pedit, Towards a constrained Willmore conjecture. Willmore energy and Willmore conjecture, pp 119–138, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2018.
- [14] L. Heller. Dirac Tori. Differ. Geom. Appl. volume 54, Part A, pp 122–128, 2017.
- [15] L. Heller, S. Heller. Abelianization of Fuchsian systems on a 4-punctured sphere and applications. J. Symplect. Geom. volume 14, no. 4, pp 1059–1088, 2016.
- [16] L. Heller, S. Heller, N. Schmitt. Spectral curve theory for (k, l)-Symmetric CMC Surfaces of Higher Genus. J. Geom. Phys. volume 98, pp 201–213, 2015.
- [17] L. Heller. Constrained Willmore and CMC Tori in the 3-Sphere. Differ. Geom. Appl. volume 40, pp 232–242, 2015.
- [18] L. Heller. Equivariant Constrained Willmore Tori in the 3-Sphere. Math. Z. volume 278, no. 3, pp 955-977, 2014.
- [19] L. Heller, Constrained Willmore Tori and Elastic Curves in 2-Dimensional Space Forms. Comm. Anal. Geom. volume 22, no. 2, pp 343–369, 2014.
- [20] L. Heller. Constrained Willmore Hopf tori. Oberwolfach Reports, voume 10, no. 2, 2013.
- [21] L. Heller. Equivariant Constrained Willmore Tori in S3. PhD Thesis, Eberhard Karls University Tübingen, 2012.
- [22] L. Heller, S. Heller, N. Schmitt, Exploring the Space of Compact Symmetric CMC Surfaces. Preprint: arXiv: 1503.07838.
- [23] I. Biswas, S. Dumitrescu, L. Heller, S. Heller, On the existence of holomorphic curves in compact quotients of SL(2,C). 33 pages, preprint: arXiv:2112.03131.
- [24] L. Heller, S. Heller, M. Traizet. Complete families of embedded high genus CMC surfaces in the 3-sphere. 42 pages, preprint: arXiv:2108.10214.
更新时间: 2024-09-12 17:18:08