杨琳
研究员
团队: 分析和几何
办公室: A3-4-208
邮箱: lynn@bimsa.cn
研究方向: 微分几何、可积系统、代数几何
个人简介
Lynn Heller于2003-2008年在柏林工业大学学习经济学和在柏林工业大学学习数学,并于2012年在图宾根埃伯哈德卡尔斯大学获得博士学位。此后,她留在图宾根做博士后,直到2017年在汉诺威莱布尼茨大学获得初级教授职位。其在微分几何上有近 10 年的研究科研经历,特别是三维情况下的 constantmean-curvature (CMC)曲面和 constrained Willmore 曲面的微分几何问题,涵盖几何分析,可积系统,李代数,代数几何等多个领域。在国际重要期刊上发表论文 20 余篇,引用 100 余次,H 指数 6。在国际会议上受邀参与报告 20 余次。
研究兴趣
- I aim at answering differential geometric questions arising in the study of minimal and constant mean curvature surfaces as well as (constrained) Willmore surfaces (in 3−dimensional space forms) by combining techniques from geometric analysis, integrable systems (e.g., Hitchin system) and algebraic geometry (e.g.,Higgs bundles and moduli spaces). Recently, we discovered a surprising connection to number theory, when alternating multiple zeta values naturally appeared in our computations.
教育经历
- 2020 - 汉诺威大学 Positive interims evaluation of the Juniorprofessorship, equivalent to the German Habilitation.
- 2009 - 2012 蒂宾根大学 数学 博士
- 2003 - 2007 柏林自由大学 工商管理 硕士
- 2003 - 2008 柏林工业大学 数学 硕士
工作经历
- 2022 - 北京雁栖湖应用数学研究院 研究员
- 2017 - 2022 汉诺威大学 青年教授
- 2014 - 2017 蒂宾根大学 Margarete von Wrangell fellow
- 2013 - 2014 蒂宾根大学 博士后
- 2007 - 2012 蒂宾根大学 助教
出版物
- [1] S. Charlton, L. Heller, S. Heller, M. Traizet, Minimal surfaces and alternating multiple zetas, arxiv:2407.07130 (2024)
- [2] Indranil Biswas, Sorin Dumitrescu, Lynn Heller, Sebastian Heller, João Pedro dos Santos, On the monodromy of holomorphic differential systems, Int. Jour. Math. 35 no. 9, special volume in honor of Oscar Garcia-Prada 60th birthday (2024)
- [3] Lynn Heller, Sebastian Heller, Fuchsian DPW potentials for Lawson surfaces, Geometriae Dedicata, 217(6), 101 (2023)
- [4] Lynn Heller, Sebastian Heller, Martin Traizet, Area estimates of high genus Lawson surfaces via DPW, Journal of Differential Geometry, 124(2023), 1, 1-35
- [5] I. Biswas, L. Heller, S. Heller, Holomorphic Higgs bundles over the Teichmüller space, arXiv:2308.13860 (2023)
- [6] I. Biswas, S. Dumitrescu, L. Heller, S. Heller, On the existence of holomorphic curves in compact quotients of SL(2, C), arXiv:2112.03131 (2021)
- [7] L Heller, S Heller, M Traizet, Complete families of embedded high genus CMC surfaces in the 3-sphere (with an appendix by Steven Charlton), arXiv preprint arXiv:2108.10214 (2021)
- [8] I. Biswas, S. Dumitrescu, L. Heller, S. Heller, Holomorphic systems with Fuchsian monodromy (with an appendix by Takuro Mochizuki), arXiv:2104.04818 (2021)
- [9] L. Heller, C. B. Ndiaye, First explicit constrained Willmore minimizers of nonrectangular conformal class, Adv. Math., 386(paper no. 107804), 47 Pages (2021)
- [10] Heller Lynn , Ndiaye Cheikh Birahim, Candidates for non-rectangular constrained {W}illmore minimizers, J. Geom. Phys., 165, Paper No. 104221, 23 (2021)
- [11] Heller Lynn, Generalized {W}hitham flow and its applications, Minimal Surfaces: Integrable Systems and Visualisation, 349, 131--146 (2021)
- [12] Heller Lynn , Heller Sebastian , Ndiaye Cheikh Birahim, Isothermic constrained {W}illmore tori in 3-space, Ann. Global Anal. Geom., 60(2), 231--251 (2021)
- [13] Heller Lynn , Heller Sebastian , Ndiaye Cheikh Birahim, Stability properties of 2-lobed {D}elaunay tori in the 3-sphere, Differential Geom. Appl., 79, Paper No. 101805, 14 (2021)
- [14] Heller Lynn , Heller Sebastian, Higher solutions of {H}itchin's self-duality equations, J. Integrable Syst., 5(1), xyaa006, 48 (2020)
- [15] L. Heller, S. Heller, M. Traizet, Loop group methods for the non-abelian Hodge correspondence on a 4-punctured sphere, arXiv:1907.07139 (2019)
- [16] L. Heller, F. Pedit, Towards a constrained Willmore conjecture. Willmore energy and Willmore conjecture, Monogr. Res. Notes Math.(pp 119–138) (2018)
- [17] Heller Lynn , Heller Sebastian , Schmitt Nicholas, Navigating the space of symmetric {CMC} surfaces, J. Differential Geom., 110(3), 413--455 (2018)
- [18] L. Heller, Dirac tori, Differential Geometry and its Applications, 54, 122-128 (2017)
- [19] Heller Lynn , Heller Sebastian, Abelianization of {F}uchsian systems on a 4-punctured sphere and applications, J. Symplectic Geom., 14(4), 1059--1088 (2016)
- [20] L Heller, S Heller, N Schmitt, Exploring the space of compact symmetric CMC surfaces, arXiv preprint arXiv:1503.07838 (2015)
- [21] Heller Lynn , Heller Sebastian , Schmitt Nicholas, The spectral curve theory for {$(k, l)$}-symmetric {CMC} surfaces, J. Geom. Phys., 98, 201--213 (2015)
- [22] Heller Lynn, Constrained {W}illmore and {CMC} tori in the 3-sphere, Differential Geom. Appl., 40, 232--242 (2015)
- [23] Equivariant constrained Willmore tori in the 3-sphere, Mathematische Zeitschrift, 278(3), 955-977 (2014)
- [24] L. Heller, Constrained Willmore tori and elastic curves in 2-dimensional space forms, Communications in Analysis and Geometry 22 (2), 343 – 369, 22, 343–369 (2014)
- [25] L. Heller, Constrained Willmore Hopf tori, Report/Mathematisches Forschungsinstitut Oberwolfach, 21 (2013)
- [26] L. Heller, Equivariant Constrained Willmore Tori in S3, PhD Thesis (2012)
更新时间: 2025-03-28 01:57:07