3d mirror symmetry of vertex functions for bow varieties
        
    
    Organizers
            
            Speaker
            
                                Hunter Dinkins
                            
        Time
            
            Thursday, May 8, 2025 10:00 AM - 11:00 AM
            
        Venue
            
                A6-101
            
        Online
            
                Zoom 638 227 8222
                (BIMSA)
            
        Abstract
            
                Cherkis bow varieties are a class of symplectic varieties generalizing type A Nakajima quiver varieties. Unlike the latter, bow varieties are closed under 3d mirror symmetry and are thus well-suited for discovering and proving mirror symmetry statements. One such statement concerns vertex functions, which encode curve counts in bow varieties. I will state the conjectural 3d mirror symmetry of vertex functions. Then I will explain the proof, joint with Tommaso Botta, of this statement for finite type A bow varieties.
            
         
                 
                                         
                                         
                                        