BIMSA >
Related topics in mathematical physics
Topological Quantum Mechanics on Orbifolds and Orbifold Index
Topological Quantum Mechanics on Orbifolds and Orbifold Index
Organizer
Speaker
Peng Yang
Time
Wednesday, December 4, 2024 2:00 PM - 3:00 PM
Venue
A3-1-301
Online
Zoom 537 192 5549
(BIMSA)
Abstract
The correlation map in orbifold topological quantum mechanics is a quantum version of the orbifold HKR map via integrating out massive modes. Semiclassical approximation in this model leads to a quantum field theoretic interpretation of the orbifold algebraic index theorem.
References:
1. S. Li and P.Yang, Topological Quantum Mechanics on Orbifolds and Orbifold Index, arXiv:2403.07590 [math.QA].
2. Z. Gui, S. Li, and K. Xu, Geometry of Localized Effective Theories, Exact Semi-classical Approximation and the Algebraic Index, Commun. Math. Phys. 382 (2021), 441–483.
3. R. E. Grady, Q. Li, and S. Li. Batalin–Vilkovisky quantization and the algebraic index. Advances in Mathematics, 317:575–639, 2017.
4. B. Fedosov. Deformation quantization and index theory, volume 9. Akademie Verlag Berlin, 1996.
References:
1. S. Li and P.Yang, Topological Quantum Mechanics on Orbifolds and Orbifold Index, arXiv:2403.07590 [math.QA].
2. Z. Gui, S. Li, and K. Xu, Geometry of Localized Effective Theories, Exact Semi-classical Approximation and the Algebraic Index, Commun. Math. Phys. 382 (2021), 441–483.
3. R. E. Grady, Q. Li, and S. Li. Batalin–Vilkovisky quantization and the algebraic index. Advances in Mathematics, 317:575–639, 2017.
4. B. Fedosov. Deformation quantization and index theory, volume 9. Akademie Verlag Berlin, 1996.