Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Geometry and Dynamics Seminar The number of full exceptional collections for orbifold projective lines
The number of full exceptional collections for orbifold projective lines
Organizer
Yu Wei Fan
Speaker
Takumi Otani
Time
Wednesday, April 17, 2024 1:30 PM - 3:30 PM
Venue
A3-1-101
Online
Zoom 928 682 9093 (BIMSA)
Abstract
The derived category of an orbifold projective line with positive Euler characteristic is equivalent to the one of an extended Dynkin quiver. For a Dynkin quiver, Obaid—Nauman—Shammakh—Fakieh—Ringel gave a counting formula for the number of full exceptional collections in the derived category. The number coincides with the degree of the Lyashko—Looijenga map for an ADE singularity. The equality of these numbers hints a consistency in some problems in Bridgeland stability conditions and mirror symmetry. In this talk, I will give a formula for the number of full exceptional collections for an orbifold projective line, which can be regarded as a generalization for Dynkin cases. Based on mirror symmetry, I will explain the relationship between the number and the degree of the Lyashko—Looijenga map for the orbifold projective line. This talk is based on a joint work with Yuuki Shiraishi and Atsushi Takahashi.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060