北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Geometry and Dynamics Seminar The number of full exceptional collections for orbifold projective lines
The number of full exceptional collections for orbifold projective lines
组织者
范祐维
演讲者
Takumi Otani
时间
2024年04月17日 13:30 至 15:30
地点
A3-1-101
线上
Zoom 928 682 9093 (BIMSA)
摘要
The derived category of an orbifold projective line with positive Euler characteristic is equivalent to the one of an extended Dynkin quiver. For a Dynkin quiver, Obaid—Nauman—Shammakh—Fakieh—Ringel gave a counting formula for the number of full exceptional collections in the derived category. The number coincides with the degree of the Lyashko—Looijenga map for an ADE singularity. The equality of these numbers hints a consistency in some problems in Bridgeland stability conditions and mirror symmetry. In this talk, I will give a formula for the number of full exceptional collections for an orbifold projective line, which can be regarded as a generalization for Dynkin cases. Based on mirror symmetry, I will explain the relationship between the number and the degree of the Lyashko—Looijenga map for the orbifold projective line. This talk is based on a joint work with Yuuki Shiraishi and Atsushi Takahashi.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060