Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Leaf schemes and Hodge loci \(ICBS\)
Leaf schemes and Hodge loci
Hodge conjecture is one of the millennium conjectures for which the evidences are not so much: It is proved for surfaces (Lefschetz (1,1) theorem) and surface type varieties (like cubic fourfolds), and we do not know even it is true for all Fermat varieties (despite some partial result by T. Shioda and his coauthors). The main goal of the course is introduce computational methods for finding new Hodge cycles for hypersurfaces such that its verification is challenging in such cases! I will explain few results which motivate us to claim that either the verification of Hodge conjecture for such cycles must be an easy exercise in commutative algebra or they might be good candidates to be counterexamples. For this we aim to study Hodge loci for hypersurfaces. We introduce larger parameter space and holomorphic foliations on them such that Hodge loci become the leaves of such foliation. In our way we have to develop a theory of holomorphic foliations on schemes such that the leaves also enjoy scheme structures (we call them leaf schemes). We will also introduce Hasse principal or local-global conjectures for these foliations which generalize the Katz-Grothendieck conjecture for linear differential equations.
Lecturer
Hossein Movasati
Date
7th November ~ 20th December, 2023
Location
Weekday Time Venue Online ID Password
Tuesday,Wednesday 09:50 - 11:25 Shuangqing-B626 ZOOM 2 638 227 8222 BIMSA
Reference
[1] N. M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of turrittin, Publications mathématiques de l’IHES 39 (1970), 175–232.
[2] Katz, Nicholas M. (1972). "Algebraic solutions of differential equations (p-curvature and the Hodge filtration)". Invent. Math. 18 (1–2): 1–118.
[3] W. Mendson, J. V. Pereira. Codimension one foliations in positive characteristic, Preprint 2023.
[4] Y. Miyaoka and T. Peternell, Geometry of higher dimensional algebraic varieties, vol. 26, Springer, 1997.
[5] H. Movasati, A Course in Hodge Theory: With Emphasis on Multiple Integrals, Somerville, MA: International Press Boston, 2021.
[6] H. Movasati, Modular and Automorphic Forms & Beyond, Monographs in Number Theory, World Scientific, 2021.
[7] H. Movasati, R. Villaflor, A Course in Hodge Theory: Periods of Algebraic cycles, 33 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, Brazil, 2021.
Video Public
Yes
Notes Public
Yes
Lecturer Intro
Hossein Movasati is an Iranian-Brazilian mathematician who since 2006 has worked at the Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro. He began his mathematical career working on holomorphic foliations and differential equations on complex manifolds, and gradually moved to study Hodge theory and modular forms and the role of these in mathematical physics, and in particular mirror symmetry.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060