北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Leaf schemes and Hodge loci \(ICBS\)
Leaf schemes and Hodge loci
Hodge conjecture is one of the millennium conjectures for which the evidences are not so much: It is proved for surfaces (Lefschetz (1,1) theorem) and surface type varieties (like cubic fourfolds), and we do not know even it is true for all Fermat varieties (despite some partial result by T. Shioda and his coauthors). The main goal of the course is introduce computational methods for finding new Hodge cycles for hypersurfaces such that its verification is challenging in such cases! I will explain few results which motivate us to claim that either the verification of Hodge conjecture for such cycles must be an easy exercise in commutative algebra or they might be good candidates to be counterexamples. For this we aim to study Hodge loci for hypersurfaces. We introduce larger parameter space and holomorphic foliations on them such that Hodge loci become the leaves of such foliation. In our way we have to develop a theory of holomorphic foliations on schemes such that the leaves also enjoy scheme structures (we call them leaf schemes). We will also introduce Hasse principal or local-global conjectures for these foliations which generalize the Katz-Grothendieck conjecture for linear differential equations.
讲师
侯赛因·莫瓦萨提
日期
2023年11月07日 至 12月20日
位置
Weekday Time Venue Online ID Password
周二,周三 09:50 - 11:25 Shuangqing-B626 ZOOM 2 638 227 8222 BIMSA
参考资料
[1] N. M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of turrittin, Publications mathématiques de l’IHES 39 (1970), 175–232.
[2] Katz, Nicholas M. (1972). "Algebraic solutions of differential equations (p-curvature and the Hodge filtration)". Invent. Math. 18 (1–2): 1–118.
[3] W. Mendson, J. V. Pereira. Codimension one foliations in positive characteristic, Preprint 2023.
[4] Y. Miyaoka and T. Peternell, Geometry of higher dimensional algebraic varieties, vol. 26, Springer, 1997.
[5] H. Movasati, A Course in Hodge Theory: With Emphasis on Multiple Integrals, Somerville, MA: International Press Boston, 2021.
[6] H. Movasati, Modular and Automorphic Forms & Beyond, Monographs in Number Theory, World Scientific, 2021.
[7] H. Movasati, R. Villaflor, A Course in Hodge Theory: Periods of Algebraic cycles, 33 Colóquio Brasileiro de Matemática, IMPA, Rio de Janeiro, Brazil, 2021.
视频公开
公开
笔记公开
公开
讲师介绍
Hossein Movasati is an Iranian-Brazilian mathematician who since 2006 has worked at the Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro. He began his mathematical career working on holomorphic foliations and differential equations on complex manifolds, and gradually moved to study Hodge theory and modular forms and the role of these in mathematical physics, and in particular mirror symmetry.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060