Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Distributivity and norms in motivic homotopy theory
Distributivity and norms in motivic homotopy theory
The stable motivic homotopy categories of schemes are nice ∞-categories, which admit a whole six-functor formalism. For a smooth morphism of schemes f: X→Y over a base S, the usual pullback functor f*: SH(Y)→SH(X) admits a left adjoint f_♯, the additive pushforward; they are packaged in a functor from an ∞-category of spans.
Recently, Bachmann and Hoyois discovered a multiplicative pushforward, or norm g_⊗: SH(X)→SH(Y), for g: X→Y finite étale (generalises the tensor product). These satisfy a distributivity property, and are encoded by a functor from an (∞, 2)-category of bispans. The norm functors categorify Rost’s multiplicative transfers on Grothendieck–Witt rings and are an enhancement of motivic E_∞-ring spectra; similar distributivity for additive and multiplicative transfers on genuine G-spectra played a key role in the solution of the Kervaire invariant one problem by Hill, Hopkins, and Ravenel. In this course, we introduce the notion of bispans, whose universal property categorifies distributivity in commutative (semi)rings, following Elmanto-Haugseng. We will then discuss some important examples in motivic homotopy theory. Most part will be of interest to quite general audiences.
Professor Lars Aake Andersson
Lecturer
Peng Du
Date
8th May ~ 28th June, 2024
Location
Weekday Time Venue Online ID Password
Wednesday,Friday 15:25 - 17:00 A3-1a-205 ZOOM 09 230 432 7880 BIMSA
Prerequisite
Some familiarity with the notion of simplicial sets, category theory, and algebraic geometry
Syllabus
1. Some higher categorical preliminaries (collecting some important facts about ∞-category, to be used as our built-in language)
2. The (∞, 2)-category of spans and bispans (discussing their universal properties)
3. Perspectives on motivic homotopy theory
4. Norm structures
5. Examples (from representation theory/equivariant homotopy theory/spectral DM stack/K-theory...)
Reference
[1] Tom Bachmann, Marc Hoyois, Norms in motivic homotopy theory, Astérisque 425. Paris: Société Mathématique de France (SMF). ix, 207~p. (2021).
[2] Elden Elmanto, Rune Haugseng, On distributivity in higher algebra I: The universal property of bispans, Compositio Mathematica, Volume 159 , Issue 11 (2023) , pp. 2326-2415.
[3] Jacob Lurie, Higher Topos Theory, Annals of Mathematics Studies (Book 170), Princeton University Press, 2009.
[4] Jacob Lurie, Kerodon, an online resource for homotopy-coherent mathematics. Available at https: //kerodon.net.
Audience
Graduate , Postdoc , Researcher
Video Public
Yes
Notes Public
Yes
Language
English
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060