北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > Distributivity and norms in motivic homotopy theory
Distributivity and norms in motivic homotopy theory
The stable motivic homotopy categories of schemes are nice ∞-categories, which admit a whole six-functor formalism. For a smooth morphism of schemes f: X→Y over a base S, the usual pullback functor f*: SH(Y)→SH(X) admits a left adjoint f_♯, the additive pushforward; they are packaged in a functor from an ∞-category of spans.
Recently, Bachmann and Hoyois discovered a multiplicative pushforward, or norm g_⊗: SH(X)→SH(Y), for g: X→Y finite étale (generalises the tensor product). These satisfy a distributivity property, and are encoded by a functor from an (∞, 2)-category of bispans. The norm functors categorify Rost’s multiplicative transfers on Grothendieck–Witt rings and are an enhancement of motivic E_∞-ring spectra; similar distributivity for additive and multiplicative transfers on genuine G-spectra played a key role in the solution of the Kervaire invariant one problem by Hill, Hopkins, and Ravenel. In this course, we introduce the notion of bispans, whose universal property categorifies distributivity in commutative (semi)rings, following Elmanto-Haugseng. We will then discuss some important examples in motivic homotopy theory. Most part will be of interest to quite general audiences.
Professor Lars Aake Andersson
讲师
杜鹏
日期
2024年05月08日 至 06月28日
位置
Weekday Time Venue Online ID Password
周三,周五 15:25 - 17:00 A3-1a-205 ZOOM 09 230 432 7880 BIMSA
修课要求
Some familiarity with the notion of simplicial sets, category theory, and algebraic geometry
课程大纲
1. Some higher categorical preliminaries (collecting some important facts about ∞-category, to be used as our built-in language)
2. The (∞, 2)-category of spans and bispans (discussing their universal properties)
3. Perspectives on motivic homotopy theory
4. Norm structures
5. Examples (from representation theory/equivariant homotopy theory/spectral DM stack/K-theory...)
参考资料
[1] Tom Bachmann, Marc Hoyois, Norms in motivic homotopy theory, Astérisque 425. Paris: Société Mathématique de France (SMF). ix, 207~p. (2021).
[2] Elden Elmanto, Rune Haugseng, On distributivity in higher algebra I: The universal property of bispans, Compositio Mathematica, Volume 159 , Issue 11 (2023) , pp. 2326-2415.
[3] Jacob Lurie, Higher Topos Theory, Annals of Mathematics Studies (Book 170), Princeton University Press, 2009.
[4] Jacob Lurie, Kerodon, an online resource for homotopy-coherent mathematics. Available at https: //kerodon.net.
听众
Graduate , 博士后 , Researcher
视频公开
公开
笔记公开
公开
语言
英文
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060