Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Takashi Takebe

Takashi Takebe

     Professor    
Professor Takashi Takebe

Group: Mathematical Physics

Office: A3-3-203

Email: takebe@bimsa.cn

Research Field: Mathematical Physics

Biography


Takashi Takebe is a researcher of mathematical physics, in particular integrable systems. He worked as a professor at the faculty of mathematics of National Research University Higher School of Economics in Moscow, Russia, till August 2023 and joined BIMSA as a professor in September 2023.

Research Interest


  • mathematical physics, integrable systems

Education Experience


  • 1995 -      the University of Tokyo      Mathematics      Doctor
  • 1987 - 1989      the University of Tokyo      Mathematics      Master
  • 1983 - 1987      the University of Tokyo      Mathematics      Bachelor

Work Experience


  • 2009 - 2023      National Research University Higher School of Economics      Professor
  • 1999 - 2009      Ochanomizu University      Associate professor
  • 1991 - 1999      the University of Tokyo      Assistant professor

Publication


  • [1] T. Takebe, A. Zabrodin, Multi-component Toda lattice hierarchy, arXiv, 2412.20122, 68 (2024)
  • [2] T. Takebe, Elliptic integrals and elliptic functions, Springer Verlag, Moscow Lectures series, 9 (2023)
  • [3] T. Takebe, A. Zabrodin, Dispersionless version of the constrained Toda hierarchy and symmetric radial Löwner equation, Lett. Math. Phys., 112(105) (2022)
  • [4] V. Akhmedova, T. Takebe, A. Zabrodin, Löwner equations and reductions of dis- persionless hierarchies, Journal of Geometry and Physics, 162(104100) (2021)
  • [5] T. Takebe, Q-operators for higher spin eight vertex models with a rational anisotropy parameter, Lett. Math. Phys., 109, 1867-1890 (2019)
  • [6] T. Takebe, 楕円積分と楕円関数, (日本評論社) (2019)
  • [7] V. Akhmedova, T. Takebe, A. Zabrodin, Multi-variable reductions of the dispersionless DKP hierarchy, J. Phys. A, 50(485204) (2017)
  • [8] T. Takebe, Q-Operators for Higher Spin Eight Vertex Models with an Even Number of Sites, Lett. Math. Phys., 106, 319-340 (2016)
  • [9] T. Takebe, Dispersionless BKP hierarchy and quadrant Löwner equation, SIGMA, 10(023) (2014)
  • [10] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Rikkyo University Mathematical Physics Research Centre Lecture Notes, 2 (2014)
  • [11] K. Takasaki, T. Takebe, An h̄-expansion of the Toda hierarchy: a recursive construction of solutions, Analysis and Mathematical Physics, 2, 171-214 (2012)
  • [12] K. Takasaki, T. Takebe, An h̄-dependent formulation of the Kadomtsev-Petviashvili hi- erarchy, Theoretical and Mathematical Physics, 171(2), 683-690 (2012)
  • [13] K. Takasaki, T. Takebe, L.-P. Teo, Non-degenerate solutions of the universal Whitham hierarchy, J. Phys. A, 43(325205) (2010)
  • [14] K. Takasaki, T. Takebe, Löwner equations, Hirota equations and reductions of universal Whitham hierarchy, J. Phys. A, 41(475206) (2008)
  • [15] K. Takasaki, T. Takebe, Universal Whitham hierarchy, dispersionless Hirota equa- tions and multi-component KP hierarchy, Physica D, 235, 109-125 (2007)
  • [16] T. Takebe, 数学で物理を, (日本評論社) (2007)
  • [17] T. Takebe, L.-P. Teo, Coupled modified KP hierarchy and its dispersionless limit, SIGMA, 2(072) (2006)
  • [18] T. Takebe, N. Sekiya, 可解格子模型と共形場理論の話題から, 上智大学数学講究録, 47 (2006)
  • [19] T. Takebe, L.-P. Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies, J. Phys. A, 39, 11479-11501 (2006)
  • [20] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. II, Progress in Mathematics, 237, 205-224 (2005)
  • [21] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. I, International Journal of Modern Physics, A, 19, 418-435 (2004)
  • [22] K. Takasaki, T. Takebe, An integrable system on the moduli space of rational functions and its variants, Journal of Geometry and Physics, 47, 1-20 (2003)
  • [23] T. Takebe, A note on modified KP hierarchy and its (yet another) dispersionless limit, Lett. Math. Phys., 59, 157-172 (2002)
  • [24] G. Kuroki, T. Takebe, Wess-Zumino-Witten model on elliptic curves at the critical level, J. Phys. A, 2403-2414 (2001)
  • [25] E. K. Sklyanin, T. Takebe, Separation of Variables in the Elliptic Gaudin Model, Commun. Math. Phys., 204, 17-38 (1999)
  • [26] G. Kuroki, T. Takebe, Bosonization and integral representation of solutions of the Knizhnik-Zamolodchikov-Bernard equations, Commun. Math. Phys., 204, 587-618 (1999)
  • [27] G. Kuroki, T. Takebe, Twisted Wess-Zumino-Witten models on elliptic curves,, Commun. Math. Phys., 190, 1-56 (1997)
  • [28] T. Takebe, A system of difference equations with elliptic coefficients and Bethe vectors, Commun. Math. Phys., 183, 161-182 (1997)
  • [29] T. Takebe, Bethe Ansatz for Higher Spin XYZ Models — Low-lying Excitations —, J. Phys. A, 29, 6961-6966 (1996)
  • [30] E. K. Sklyanin, T. Takebe, Algebraic Bethe Ansatz for XYZ Gaudin model, Phys. Lett. A, 219, 217-225 (1996)
  • [31] K. Takasaki, T. Takebe, Quasi-classical limit of KP hierarchy, W-symmetries and free fermions, Zapiski nauch. semi. POMI, 235, 295-303 (1996)
  • [32] K. Takasaki, T. Takebe, Integrable Hierarchies and Dispersionless Limit, Rev. Math. Phys., 7, 743-803 (1995)
  • [33] K. Takasaki, T. Takebe, Loewner equations and dispersionless hierarchies, Nankai Tracts in Mathematics, 10 (1995)
  • [34] T. Takebe, Bethe Ansatz for Higher Spin Eight-Vertex Models, J. Phys. A, 28, 6675-6706 (1995)
  • [35] T. Nakatsu, A. Kato, M. Noumi, T. Takebe, Topological String, Matrix Integral, and Singularity Theory, Phys. Lett. B, 322, 192-197 (1994)
  • [36] T. Takebe, Generalized XY Z Model associated to Sklyanin algebra,, International Journal of Modern Physics, A, 3A, 440-443 (1993)
  • [37] K. Takasaki, T. Takebe, Quasi-classical limit of Toda lattice hierarchy and W-symmetries, Lett. Math. Phys., 28, 165-176 (1993)
  • [38] K. Takasaki, T. Takebe, SDiff(2) KP Hierarchy, Adv. Series in Math. Phys., 16, 888-922 (1992)
  • [39] T. Takebe, From General Zakharov-Shabat Equations to the KP and the Toda Lattice Hierarchies, Adv. Series in Math. Phys., 16, 923-940 (1992)
  • [40] T. Takebe, Generalized Bethe Ansatz with general spin representations of the Sklyanin algebra, J. Phys. A, 25, 1071-1083 (1992)
  • [41] T. Takebe, О единственности формфакторов для редуцированных модели синус-Гордона, Записки научных семинаров ЛОМИ, 199, 177-181 (1992)
  • [42] K. Takasaki, T. Takebe, SDiff(2) Toda Equation – Hierarchy, Tau Function and Symmetries –, Lett. Math. Phys., 23, 205-214 (1991)
  • [43] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy II, Publ. RIMS, 27, 491-503 (1991)
  • [44] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I, Lett. Math. Phys., 21, 77-84 (1991)
  • [45] M. Fukuma, T. Takebe, The Toda Lattice Hierarchy and Deformations of Conformal Field Theories, Modern Physics Letters A, 5(7), 509-518 (1990)
  • [46] T. Takebe, Toda Lattice Hierarchy and Conservation Laws, Commun. Math. Phys., 129, 281-318 (1990)

 

Update Time: 2025-05-20 15:34:25


Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060