武部尚志
研究员
团队: 数学物理
办公室: A3-3-203
邮箱: takebe@bimsa.cn
研究方向: 数学物理
个人简介
Takashi Takebe 从事数学物理可积系统方向的研究。 2023年8月前,他在俄罗斯莫斯科国立研究大学高等经济学院数学系担任教授,并于2023年9月加入北京雁栖湖应用数学研究院任研究员一职。
研究兴趣
- mathematical physics, integrable systems
教育经历
- 1995 - the University of Tokyo Mathematics 博士
- 1987 - 1989 the University of Tokyo Mathematics 硕士
- 1983 - 1987 the University of Tokyo Mathematics 学士
工作经历
- 2009 - 2023 National Research University Higher School of Economics Professor
- 1999 - 2009 Ochanomizu University Associate professor
- 1991 - 1999 the University of Tokyo Assistant professor
出版物
- [1] T. Takebe, A. Zabrodin, Multi-component Toda lattice hierarchy, arXiv, 2412.20122, 68 (2024)
- [2] T. Takebe, Elliptic integrals and elliptic functions, Springer Verlag, Moscow Lectures series, 9 (2023)
- [3] T. Takebe, A. Zabrodin, Dispersionless version of the constrained Toda hierarchy and symmetric radial Löwner equation, Lett. Math. Phys., 112(105) (2022)
- [4] V. Akhmedova, T. Takebe, A. Zabrodin, Löwner equations and reductions of dis- persionless hierarchies, Journal of Geometry and Physics, 162(104100) (2021)
- [5] T. Takebe, -operators for higher spin eight vertex models with a rational anisotropy parameter, Lett. Math. Phys., 109, 1867-1890 (2019)
- [6] T. Takebe, 楕円積分と楕円関数, (日本評論社) (2019)
- [7] V. Akhmedova, T. Takebe, A. Zabrodin, Multi-variable reductions of the dispersionless DKP hierarchy, J. Phys. A, 50(485204) (2017)
- [8] T. Takebe, Q-Operators for Higher Spin Eight Vertex Models with an Even Number of Sites, Lett. Math. Phys., 106, 319-340 (2016)
- [9] T. Takebe, Dispersionless BKP hierarchy and quadrant Löwner equation, SIGMA, 10(023) (2014)
- [10] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Rikkyo University Mathematical Physics Research Centre Lecture Notes, 2 (2014)
- [11] K. Takasaki, T. Takebe, An h̄-dependent formulation of the Kadomtsev-Petviashvili hi- erarchy, Theoretical and Mathematical Physics, 171(2), 683-690 (2012)
- [12] K. Takasaki, T. Takebe, An h̄-expansion of the Toda hierarchy: a recursive construction of solutions, Analysis and Mathematical Physics, 2, 171-214 (2012)
- [13] K. Takasaki, T. Takebe, L.-P. Teo, Non-degenerate solutions of the universal Whitham hierarchy, J. Phys. A, 43(325205) (2010)
- [14] K. Takasaki, T. Takebe, Löwner equations, Hirota equations and reductions of universal Whitham hierarchy, J. Phys. A, 41(475206) (2008)
- [15] T. Takebe, 数学で物理を, (日本評論社) (2007)
- [16] K. Takasaki, T. Takebe, Universal Whitham hierarchy, dispersionless Hirota equa- tions and multi-component KP hierarchy, Physica D, 235, 109-125 (2007)
- [17] T. Takebe, L.-P. Teo, Coupled modified KP hierarchy and its dispersionless limit, SIGMA, 2(072) (2006)
- [18] T. Takebe, N. Sekiya, 可解格子模型と共形場理論の話題から, 上智大学数学講究録, 47 (2006)
- [19] T. Takebe, L.-P. Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies, J. Phys. A, 39, 11479-11501 (2006)
- [20] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. II, Progress in Mathematics, 237, 205-224 (2005)
- [21] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. I, International Journal of Modern Physics, A, 19, 418-435 (2004)
- [22] K. Takasaki, T. Takebe, An integrable system on the moduli space of rational functions and its variants, Journal of Geometry and Physics, 47, 1-20 (2003)
- [23] T. Takebe, A note on modified KP hierarchy and its (yet another) dispersionless limit, Lett. Math. Phys., 59, 157-172 (2002)
- [24] G. Kuroki, T. Takebe, Wess-Zumino-Witten model on elliptic curves at the critical level, J. Phys. A, 2403-2414 (2001)
- [25] G. Kuroki, T. Takebe, Bosonization and integral representation of solutions of the Knizhnik-Zamolodchikov-Bernard equations, Commun. Math. Phys., 204, 587-618 (1999)
- [26] E. K. Sklyanin, T. Takebe, Separation of Variables in the Elliptic Gaudin Model, Commun. Math. Phys., 204, 17-38 (1999)
- [27] G. Kuroki, T. Takebe, Twisted Wess-Zumino-Witten models on elliptic curves,, Commun. Math. Phys., 190, 1-56 (1997)
- [28] T. Takebe, A system of difference equations with elliptic coefficients and Bethe vectors, Commun. Math. Phys., 183, 161-182 (1997)
- [29] T. Takebe, Bethe Ansatz for Higher Spin XYZ Models — Low-lying Excitations —, J. Phys. A, 29, 6961-6966 (1996)
- [30] E. K. Sklyanin, T. Takebe, Algebraic Bethe Ansatz for XYZ Gaudin model, Phys. Lett. A, 219, 217-225 (1996)
- [31] K. Takasaki, T. Takebe, Loewner equations and dispersionless hierarchies, Nankai Tracts in Mathematics, 10 (1995)
- [32] T. Takebe, Bethe Ansatz for Higher Spin Eight-Vertex Models, J. Phys. A, 28, 6675-6706 (1995)
- [33] K. Takasaki, T. Takebe, Integrable Hierarchies and Dispersionless Limit, Rev. Math. Phys., 7, 743-803 (1995)
- [34] T. Nakatsu, A. Kato, M. Noumi, T. Takebe, Topological String, Matrix Integral, and Singularity Theory, Phys. Lett. B, 322, 192-197 (1994)
- [35] T. Takebe, Generalized XY Z Model associated to Sklyanin algebra,, International Journal of Modern Physics, A, 3A, 440-443 (1993)
- [36] K. Takasaki, T. Takebe, Quasi-classical limit of Toda lattice hierarchy and W-symmetries, Lett. Math. Phys., 28, 165-176 (1993)
- [37] K. Takasaki, T. Takebe, SDiff(2) KP Hierarchy, Adv. Series in Math. Phys., 16, 888-922 (1992)
- [38] T. Takebe, From General Zakharov-Shabat Equations to the KP and the Toda Lattice Hierarchies, Adv. Series in Math. Phys., 16, 923-940 (1992)
- [39] T. Takebe, Generalized Bethe Ansatz with general spin representations of the Sklyanin algebra, J. Phys. A, 25, 1071-1083 (1992)
- [40] T. Takebe, О единственности формфакторов для редуцированных модели синус-Гордона, Записки научных семинаров ЛОМИ, 199, 177-181 (1992)
- [41] K. Takasaki, T. Takebe, SDiff(2) Toda Equation – Hierarchy, Tau Function and Symmetries –, Lett. Math. Phys., 23, 205-214 (1991)
- [42] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy II, Publ. RIMS, 27, 491-503 (1991)
- [43] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I, Lett. Math. Phys., 21, 77-84 (1991)
- [44] T. Takebe, Toda Lattice Hierarchy and Conservation Laws, Commun. Math. Phys., 129, 281-318 (1990)
- [45] M. Fukuma, T. Takebe, The Toda Lattice Hierarchy and Deformations of Conformal Field Theories, Modern Physics Letters A, 5(7), 509-518 (1990)
- [46] V Akhmedova, T Takebe, A Zabrodin, Löwner equations and reductions of dispersionless hierarchies, Journal of Geometry and Physics (2020)
- [47] T Takebe, Dispersionless BKP Hierarchy and Quadrant Löwner Equation⋆, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10 (2014)
- [48] K Takasaki, T Takebe, An -dependent formulation of the Kadomtsev–Petviashvili hierarchy, Theoret. and Math. Phys, 171(2), 683-690 (2012)
- [49] K Takasaki, T Takebe, An {\ hbar}-expansion of the Toda hierarchy, Analysis and Mathematical Physics, 2(2), 171-214 (2012)
- [50] T Takebe, K Takasaki, An hbar-expansion of the Toda hierarchy: a recursive construction of solutions (2011)
- [51] K Takasaki, T Takebe, hbar-Dependent KP hierarchy, arXiv preprint arXiv:1105.0794 (2011)
- [52] K Takasaki, T Takebe, hbar-expansion of KP hierarchy: Recursive construction of solutions, arXiv preprint arXiv:0912.4867 (2009)
- [53] K Takasaki, T Takebe, Löwner equations, Hirota equations and reductions of the universal Whitham hierarchy, Journal of Physics A: Mathematical and Theoretical, 41(47) (2008)
- [54] K Takasaki, T Takebe, Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy, Physica D: Nonlinear Phenomena 235 (1-2), 109-125 (2007)
- [55] K Takasaki, T Takebe, Radial Loewner equation and dispersionless cmKP hierarchy, arXiv preprint nlin/0601063 (2006)
- [56] T Takebe, TRIGONOMETRIC DEGENERATION AND ORBIFOLD WESS-ZUMINO-WITTEN MODEL I, International Journal of Modern Physics A, 19(supp02), 418-435 (2004)
- [57] T Takebe, A note on the modified KP hierarchy and its (yet another) dispersionless limit, Letters in Mathematical Physics, 59(2), 157-172 (2002)
- [58] G Kuroki, T Takebe, Bosonization and Integral Representation of Solutions¶ of the Knizhnik–Zamolodchikov–Bernard Equations, Communications in Mathematical Physics, 204(3), 587-618 (1999)
- [59] G Kuroki, T Takebe, Wakimoto Modules and Knizhnik-Zamolodchikov-Bernard Equations, Progress of theoretical physics. Supplement, 138-148 (1999)
- [60] G Kuroki, T Takebe, Twisted Wess-Zumino-Witten models on elliptic curves, Communications in mathematical physics, 190, 1-56 (1997)
- [61] T Takebe, Bethe ansatz for higher-spin XYZ models-low-lying excitations, Journal of Physics A: Mathematical and General, 29(21) (1996)
- [62] EK Sklyanin, T Takebe, Algebraic Bethe ansatz for the XYZ Gaudin model, Physics Letters A, 219(3), 217-225 (1996)
- [63] T Takebe, Uniqueness of form factors for the reduced sine-Gordon model, Journal of Mathematical Sciences, 77, 3133-3136 (1995)
- [64] T Nakatsu, A Kato, M Noumi, T Takebe, Topological strings, matrix integrals, and singularity theory, Physics Letters B, 322(3), 192-197 (1994)
- [65] K Takasaki, T Takebe, Quasi-classical limit of Toda hierarchy and-infinity symmetries, letters in mathematical physics, 28, 165-176 (1993)
- [66] T Takebe, Generalized XYZ Model associated to Sklyanin algebra, Int. J. Mod. Phys. A, 440-443 (1993)
- [67] T Takebe, On uniqueness of formfactors for the reduced sine-Gordon model, Zapiski Nauchnykh Seminarov POMI, 199, 177-181 (1992)
- [68] K Takasaki, T Takebe, SDiff (2) KP hierarchy, International Journal of Modern Physics A, 7(supp01b), 889-922 (1992)
- [69] T Takebe, Generalized Bethe Ansatz with the general spin representations of the Sklyanin algebra, Journal of Physics A: Mathematical and General, 25(5) (1992)
- [70] T Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy: I, Letters in Mathematical Physics, 21(1), 77-84 (1991)
- [71] K Takasaki, T Takebe, SDiff (2) Toda equation—hierarchy, tau function, and symmetries, Letters in Mathematical Physics, 23, 205-214 (1991)
- [72] K Takasaki, T Takebe, SDiff (2) Toda equation (1991)
- [73] T Takebe, From General Zakharov-Shabat Equations to the KP and the Toda Lattice Hierarchies: RIMS91 Project'Infinite Analysis', 01.06-31.08. 1991: Contributed Papers No. 7, Kyoto University. Research Institute for Mathematical Sciences [RIMS] (1991)
- [74] EK Sklyanin, T Takebe, Separation of Variables\\ in the Elliptic Gaudin Model\ end {center}\ vskip1cm\ begin {center}
更新时间: 2025-07-23 17:51:51