北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > 武部尚志

武部尚志

     研究员    
研究员 武部尚志

团队: 数学物理

办公室: A3-3-203

邮箱: takebe@bimsa.cn

研究方向: 数学物理

个人简介


Takashi Takebe 从事数学物理可积系统方向的研究。 2023年8月前,他在俄罗斯莫斯科国立研究大学高等经济学院数学系担任教授,并于2023年9月加入北京雁栖湖应用数学研究院任研究员一职。

研究兴趣


  • mathematical physics, integrable systems

教育经历


  • 1995 -      the University of Tokyo      Mathematics      博士
  • 1987 - 1989      the University of Tokyo      Mathematics      硕士
  • 1983 - 1987      the University of Tokyo      Mathematics      学士

工作经历


  • 2009 - 2023      National Research University Higher School of Economics      Professor
  • 1999 - 2009      Ochanomizu University      Associate professor
  • 1991 - 1999      the University of Tokyo      Assistant professor

出版物


  • [1] T. Takebe, A. Zabrodin, Multi-component Toda lattice hierarchy, arXiv, 2412.20122, 68 (2024)
  • [2] T. Takebe, Elliptic integrals and elliptic functions, Springer Verlag, Moscow Lectures series, 9 (2023)
  • [3] T. Takebe, A. Zabrodin, Dispersionless version of the constrained Toda hierarchy and symmetric radial Löwner equation, Lett. Math. Phys., 112(105) (2022)
  • [4] V. Akhmedova, T. Takebe, A. Zabrodin, Löwner equations and reductions of dis- persionless hierarchies, Journal of Geometry and Physics, 162(104100) (2021)
  • [5] T. Takebe, -operators for higher spin eight vertex models with a rational anisotropy parameter, Lett. Math. Phys., 109, 1867-1890 (2019)
  • [6] T. Takebe, 楕円積分と楕円関数, (日本評論社) (2019)
  • [7] V. Akhmedova, T. Takebe, A. Zabrodin, Multi-variable reductions of the dispersionless DKP hierarchy, J. Phys. A, 50(485204) (2017)
  • [8] T. Takebe, Q-Operators for Higher Spin Eight Vertex Models with an Even Number of Sites, Lett. Math. Phys., 106, 319-340 (2016)
  • [9] T. Takebe, Dispersionless BKP hierarchy and quadrant Löwner equation, SIGMA, 10(023) (2014)
  • [10] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Rikkyo University Mathematical Physics Research Centre Lecture Notes, 2 (2014)
  • [11] K. Takasaki, T. Takebe, An h̄-dependent formulation of the Kadomtsev-Petviashvili hi- erarchy, Theoretical and Mathematical Physics, 171(2), 683-690 (2012)
  • [12] K. Takasaki, T. Takebe, An h̄-expansion of the Toda hierarchy: a recursive construction of solutions, Analysis and Mathematical Physics, 2, 171-214 (2012)
  • [13] K. Takasaki, T. Takebe, L.-P. Teo, Non-degenerate solutions of the universal Whitham hierarchy, J. Phys. A, 43(325205) (2010)
  • [14] K. Takasaki, T. Takebe, Löwner equations, Hirota equations and reductions of universal Whitham hierarchy, J. Phys. A, 41(475206) (2008)
  • [15] T. Takebe, 数学で物理を, (日本評論社) (2007)
  • [16] K. Takasaki, T. Takebe, Universal Whitham hierarchy, dispersionless Hirota equa- tions and multi-component KP hierarchy, Physica D, 235, 109-125 (2007)
  • [17] T. Takebe, L.-P. Teo, Coupled modified KP hierarchy and its dispersionless limit, SIGMA, 2(072) (2006)
  • [18] T. Takebe, N. Sekiya, 可解格子模型と共形場理論の話題から, 上智大学数学講究録, 47 (2006)
  • [19] T. Takebe, L.-P. Teo, A. Zabrodin, Löwner equations and dispersionless hierarchies, J. Phys. A, 39, 11479-11501 (2006)
  • [20] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. II, Progress in Mathematics, 237, 205-224 (2005)
  • [21] T. Takebe, Trigonometric Degeneration and Orbifold Wess-Zumino-Witten Model. I, International Journal of Modern Physics, A, 19, 418-435 (2004)
  • [22] K. Takasaki, T. Takebe, An integrable system on the moduli space of rational functions and its variants, Journal of Geometry and Physics, 47, 1-20 (2003)
  • [23] T. Takebe, A note on modified KP hierarchy and its (yet another) dispersionless limit, Lett. Math. Phys., 59, 157-172 (2002)
  • [24] G. Kuroki, T. Takebe, Wess-Zumino-Witten model on elliptic curves at the critical level, J. Phys. A, 2403-2414 (2001)
  • [25] G. Kuroki, T. Takebe, Bosonization and integral representation of solutions of the Knizhnik-Zamolodchikov-Bernard equations, Commun. Math. Phys., 204, 587-618 (1999)
  • [26] E. K. Sklyanin, T. Takebe, Separation of Variables in the Elliptic Gaudin Model, Commun. Math. Phys., 204, 17-38 (1999)
  • [27] G. Kuroki, T. Takebe, Twisted Wess-Zumino-Witten models on elliptic curves,, Commun. Math. Phys., 190, 1-56 (1997)
  • [28] T. Takebe, A system of difference equations with elliptic coefficients and Bethe vectors, Commun. Math. Phys., 183, 161-182 (1997)
  • [29] T. Takebe, Bethe Ansatz for Higher Spin XYZ Models — Low-lying Excitations —, J. Phys. A, 29, 6961-6966 (1996)
  • [30] E. K. Sklyanin, T. Takebe, Algebraic Bethe Ansatz for XYZ Gaudin model, Phys. Lett. A, 219, 217-225 (1996)
  • [31] K. Takasaki, T. Takebe, Loewner equations and dispersionless hierarchies, Nankai Tracts in Mathematics, 10 (1995)
  • [32] T. Takebe, Bethe Ansatz for Higher Spin Eight-Vertex Models, J. Phys. A, 28, 6675-6706 (1995)
  • [33] K. Takasaki, T. Takebe, Integrable Hierarchies and Dispersionless Limit, Rev. Math. Phys., 7, 743-803 (1995)
  • [34] T. Nakatsu, A. Kato, M. Noumi, T. Takebe, Topological String, Matrix Integral, and Singularity Theory, Phys. Lett. B, 322, 192-197 (1994)
  • [35] T. Takebe, Generalized XY Z Model associated to Sklyanin algebra,, International Journal of Modern Physics, A, 3A, 440-443 (1993)
  • [36] K. Takasaki, T. Takebe, Quasi-classical limit of Toda lattice hierarchy and W-symmetries, Lett. Math. Phys., 28, 165-176 (1993)
  • [37] K. Takasaki, T. Takebe, SDiff(2) KP Hierarchy, Adv. Series in Math. Phys., 16, 888-922 (1992)
  • [38] T. Takebe, From General Zakharov-Shabat Equations to the KP and the Toda Lattice Hierarchies, Adv. Series in Math. Phys., 16, 923-940 (1992)
  • [39] T. Takebe, Generalized Bethe Ansatz with general spin representations of the Sklyanin algebra, J. Phys. A, 25, 1071-1083 (1992)
  • [40] T. Takebe, О единственности формфакторов для редуцированных модели синус-Гордона, Записки научных семинаров ЛОМИ, 199, 177-181 (1992)
  • [41] K. Takasaki, T. Takebe, SDiff(2) Toda Equation – Hierarchy, Tau Function and Symmetries –, Lett. Math. Phys., 23, 205-214 (1991)
  • [42] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy II, Publ. RIMS, 27, 491-503 (1991)
  • [43] T. Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy I, Lett. Math. Phys., 21, 77-84 (1991)
  • [44] T. Takebe, Toda Lattice Hierarchy and Conservation Laws, Commun. Math. Phys., 129, 281-318 (1990)
  • [45] M. Fukuma, T. Takebe, The Toda Lattice Hierarchy and Deformations of Conformal Field Theories, Modern Physics Letters A, 5(7), 509-518 (1990)
  • [46] V Akhmedova, T Takebe, A Zabrodin, Löwner equations and reductions of dispersionless hierarchies, Journal of Geometry and Physics (2020)
  • [47] T Takebe, Dispersionless BKP Hierarchy and Quadrant Löwner Equation⋆, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10 (2014)
  • [48] K Takasaki, T Takebe, An -dependent formulation of the Kadomtsev–Petviashvili hierarchy, Theoret. and Math. Phys, 171(2), 683-690 (2012)
  • [49] K Takasaki, T Takebe, An {\ hbar}-expansion of the Toda hierarchy, Analysis and Mathematical Physics, 2(2), 171-214 (2012)
  • [50] T Takebe, K Takasaki, An hbar-expansion of the Toda hierarchy: a recursive construction of solutions (2011)
  • [51] K Takasaki, T Takebe, hbar-Dependent KP hierarchy, arXiv preprint arXiv:1105.0794 (2011)
  • [52] K Takasaki, T Takebe, hbar-expansion of KP hierarchy: Recursive construction of solutions, arXiv preprint arXiv:0912.4867 (2009)
  • [53] K Takasaki, T Takebe, Löwner equations, Hirota equations and reductions of the universal Whitham hierarchy, Journal of Physics A: Mathematical and Theoretical, 41(47) (2008)
  • [54] K Takasaki, T Takebe, Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy, Physica D: Nonlinear Phenomena 235 (1-2), 109-125 (2007)
  • [55] K Takasaki, T Takebe, Radial Loewner equation and dispersionless cmKP hierarchy, arXiv preprint nlin/0601063 (2006)
  • [56] T Takebe, TRIGONOMETRIC DEGENERATION AND ORBIFOLD WESS-ZUMINO-WITTEN MODEL I, International Journal of Modern Physics A, 19(supp02), 418-435 (2004)
  • [57] T Takebe, A note on the modified KP hierarchy and its (yet another) dispersionless limit, Letters in Mathematical Physics, 59(2), 157-172 (2002)
  • [58] G Kuroki, T Takebe, Bosonization and Integral Representation of Solutions¶ of the Knizhnik–Zamolodchikov–Bernard Equations, Communications in Mathematical Physics, 204(3), 587-618 (1999)
  • [59] G Kuroki, T Takebe, Wakimoto Modules and Knizhnik-Zamolodchikov-Bernard Equations, Progress of theoretical physics. Supplement, 138-148 (1999)
  • [60] G Kuroki, T Takebe, Twisted Wess-Zumino-Witten models on elliptic curves, Communications in mathematical physics, 190, 1-56 (1997)
  • [61] T Takebe, Bethe ansatz for higher-spin XYZ models-low-lying excitations, Journal of Physics A: Mathematical and General, 29(21) (1996)
  • [62] EK Sklyanin, T Takebe, Algebraic Bethe ansatz for the XYZ Gaudin model, Physics Letters A, 219(3), 217-225 (1996)
  • [63] T Takebe, Uniqueness of form factors for the reduced sine-Gordon model, Journal of Mathematical Sciences, 77, 3133-3136 (1995)
  • [64] T Nakatsu, A Kato, M Noumi, T Takebe, Topological strings, matrix integrals, and singularity theory, Physics Letters B, 322(3), 192-197 (1994)
  • [65] K Takasaki, T Takebe, Quasi-classical limit of Toda hierarchy and-infinity symmetries, letters in mathematical physics, 28, 165-176 (1993)
  • [66] T Takebe, Generalized XYZ Model associated to Sklyanin algebra, Int. J. Mod. Phys. A, 440-443 (1993)
  • [67] T Takebe, On uniqueness of formfactors for the reduced sine-Gordon model, Zapiski Nauchnykh Seminarov POMI, 199, 177-181 (1992)
  • [68] K Takasaki, T Takebe, SDiff (2) KP hierarchy, International Journal of Modern Physics A, 7(supp01b), 889-922 (1992)
  • [69] T Takebe, Generalized Bethe Ansatz with the general spin representations of the Sklyanin algebra, Journal of Physics A: Mathematical and General, 25(5) (1992)
  • [70] T Takebe, Representation theoretical meaning of the initial value problem for the Toda lattice hierarchy: I, Letters in Mathematical Physics, 21(1), 77-84 (1991)
  • [71] K Takasaki, T Takebe, SDiff (2) Toda equation—hierarchy, tau function, and symmetries, Letters in Mathematical Physics, 23, 205-214 (1991)
  • [72] K Takasaki, T Takebe, SDiff (2) Toda equation (1991)
  • [73] T Takebe, From General Zakharov-Shabat Equations to the KP and the Toda Lattice Hierarchies: RIMS91 Project'Infinite Analysis', 01.06-31.08. 1991: Contributed Papers No. 7, Kyoto University. Research Institute for Mathematical Sciences [RIMS] (1991)
  • [74] EK Sklyanin, T Takebe, Separation of Variables\\ in the Elliptic Gaudin Model\ end {center}\ vskip1cm\ begin {center}

 

更新时间: 2025-07-23 17:51:51


北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060