北京雁栖湖应用数学研究院 北京雁栖湖应用数学研究院

  • 关于我们
    • 院长致辞
    • 理事会
    • 协作机构
    • 参观来访
  • 人员
    • 管理层
    • 科研人员
    • 博士后
    • 来访学者
    • 行政团队
    • 学术支持
  • 学术研究
    • 研究团队
    • 公开课
    • 讨论班
  • 招生招聘
    • 教研人员
    • 博士后
    • 学生
  • 会议
    • 学术会议
    • 工作坊
    • 论坛
  • 学院生活
    • 住宿
    • 交通
    • 配套设施
    • 周边旅游
  • 新闻
    • 新闻动态
    • 通知公告
    • 资料下载
关于我们
院长致辞
理事会
协作机构
参观来访
人员
管理层
科研人员
博士后
来访学者
行政团队
学术支持
学术研究
研究团队
公开课
讨论班
招生招聘
教研人员
博士后
学生
会议
学术会议
工作坊
论坛
学院生活
住宿
交通
配套设施
周边旅游
新闻
新闻动态
通知公告
资料下载
清华大学 "求真书院"
清华大学丘成桐数学科学中心
清华三亚国际数学论坛
上海数学与交叉学科研究院
BIMSA > BIMSA Digital Economy Lab Seminar idopNetwork Reconstruction through Nonlinear ODE-Based Modeling
idopNetwork Reconstruction through Nonlinear ODE-Based Modeling
组织者
高瑞泽 , 韩立岩 , 李振 , 龙飞 , 史冬波 , 汤珂 , 张琦
演讲者
董昂
时间
2025年10月17日 15:00 至 16:00
地点
A3-2-303
线上
Zoom 435 529 7909 (BIMSA)
摘要
Networks are fundamental to understanding complex systems, characterized by many underlying entities and their intricate interactions. We contextualize evolutionary game theory and community ecology theory to explain how the dynamic change of an entity is determined by its own strategy and the strategies of its interacting counterparts. We derive a system of nonlinear mixed ordinary differential equations (nMODEs) to quantify the contributions of these two types of strategies and encode them into informative, dynamic, omnidirectional, and personalized networks (idopNetworks). We implement multi-task learning (MTL) into the matrix representation of linearized nMODEs to jointly choose a subset of the most significant entities (acting as predictors) for all entities each viewed as a response. In going beyond existing networking practice, idopNetworks can capture all-around interacting links, nonlinearities, and emergent properties of a complex system, which, to a larger extent, approximate the intricate and multifaceted nature of complex systems. We apply our model to learn gene regulatory idopNetworks from transcriptional data, identifying previously-unknown regulatory roles of several genes in mediating malaria infection. We perform computer simulation to validate the statistical relevance of the model. Our model provides a new insight of machine learning to analyze, model, and interpret complex data in a non-Euclidean space.
演讲者介绍
Dr.Dong received his education in Biotechnology and Silviculture at Zhejiang A&F University in 2018, then earned his Ph.D. at Beijing Forestry University in 2023. He is broadly interested in the role that network theory plays in paradigm shift in the life sciences, his current research lies at the area of statistical modelling and computer programming. He is working on how to fully utilize existing data to build a network which can analysis the detailed regulatory relationship between genes during the complicated biological process and how to make this idea come true. He also uses computer simulation that allows exploration and verification of design model parameters in multiple scenarios, and helps to further improve and understand the model as well as the complex systems.
北京雁栖湖应用数学研究院
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

版权所有 © 北京雁栖湖应用数学研究院

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060