Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar Finite Euler products and the Riemann Hypothesis
Finite Euler products and the Riemann Hypothesis
Organizers
Hansheng Diao , Yueke Hu , Emmanuel Lecouturier , Cezar Lupu
Speaker
Steve Gonek
Time
Tuesday, January 10, 2023 8:00 PM - 9:00 PM
Venue
1118
Online
Zoom 293 812 9202 (BIMSA)
Abstract
We investigate approximations of the Riemann zeta function by truncations of its Dirichlet series and Euler product, and then construct a parameterized family of non-analytic approximations to the zeta function. Apart from a few possible exceptions near the real axis, each function in the family satisfies a Riemann Hypothesis. When the parameter is not too large, the functions have roughly the same number of zeros as the zeta function, their zeros are all simple, and they repel. In fact, if the Riemann hypothesis is true, the zeros of these functions converge to those of the zeta function as the parameter increases, and between zeros of the zeta function the functions in the family tend to twice the zeta function. They may therefore be regarded as models of the Riemann zeta function. The structure of the functions explains the simplicity and repulsion of their zeros when the parameter is small. One might therefore hope to gain insight from them into the mechanism responsible for the corresponding properties of the zeros of the zeta function.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060