Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar Elementary proofs of Zagier's formula for multiple zeta values and its odd variant
Elementary proofs of Zagier's formula for multiple zeta values and its odd variant
Organizers
Hansheng Diao , Yueke Hu , Emmanuel Lecouturier , Cezar Lupu
Speaker
Li Lai
Time
Tuesday, July 12, 2022 4:00 PM - 5:00 PM
Venue
1110
Online
Zoom 361 038 6975 (BIMSA)
Abstract
In 2012, Zagier proved a formula which expresses the multiple zeta values \[ H(a, b)=\zeta(\underbrace{2,2, \ldots, 2}_{a}, 3, \underbrace{2,2, \ldots, 2}_{b}) \] as explicit $\mathbb{Q}$-linear combinations of products $\pi^{2m}\zeta(2n+1)$ with $2m+2n+1=2a+2b+3$. Recently, Murakami proved an odd variant of Zagier's formula for the multiple $t$-values \[ T(a, b)=t(\underbrace{2,2, \ldots, 2}_{a}, 3, \underbrace{2,2, \ldots, 2}_{b}). \] In this talk, we will give new and parallel proofs of these two formulas. Our proofs are elementary in the sense that they only involve the Taylor series of powers of arcsine function and certain trigonometric integrals. Thus, these formulas become more transparent from the view of analysis. This is a joint work with Cezar Lupu and Derek Orr.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060