Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > YMSC-BIMSA Quantum Information Seminar Quantum variational learning for quantum error-correcting codes
Quantum variational learning for quantum error-correcting codes
Organizer
Zheng Wei Liu
Speaker
Chenfeng Cao
Time
Friday, June 10, 2022 9:30 AM - 10:30 AM
Venue
Shuangqing-A626
Online
Zoom 388 528 9728 (BIMSA)
Abstract
Quantum error-correcting codes (QECCs) are believed to be a necessity for large-scale fault-tolerant quantum computation. In the past two decades, various methods of QECC constructions have been developed, leading to many good families of codes. However, the majority of these codes are not suitable for near-term quantum devices. Here we present VarQEC, a noise-resilient variational quantum algorithm to search for quantum codes with a hardware-efficient encoding circuit. Given the target noise channel (or the target code parameters) and the hardware connectivity graph, we optimize a shallow variational quantum circuit to prepare the basis states of an eligible code. We have verified its effectiveness by (re)discovering some symmetric and asymmetric codes, e.g., ((n,2n−6,3))2 for n from 7 to 14. We also found new ((6,2,3))2 and ((7,2,3))2 codes that are not equivalent to any stabilizer code, and extensive numerical evidence with VarQEC suggests that a ((7,3,3))2 code does not exist. Furthermore, we found many new channel-adaptive codes for error models involving nearest-neighbor correlated errors. Our work sheds new light on the understanding of QECC in general, which may also help to enhance near-term device performance with channel-adaptive error-correcting codes.
Speaker Intro
Chenfeng Cao obtained his Bachelor’s degree from the University of Chinese Academy of Sciences before pursuing, his PhD in The Hong Kong University of Science and Technology since 2019. He is conducting research on quantum information and quantum computation, with a focus on near-term quantum algorithms and quantum error correction.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060