Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > YMSC-BIMSA Quantum Information Seminar Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays
Quantum Optimization of Maximum Independent Set using Rydberg Atom Arrays
Organizer
Zheng Wei Liu
Speaker
Madelyn Cain
Time
Friday, March 11, 2022 9:30 AM - 12:15 PM
Venue
JCY-1
Online
Zoom 388 528 9728 (BIMSA)
Abstract
Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. I will present experimental investigations of quantum algorithms for solving the Maximum Independent Set problem using Rydberg atom arrays with up to 289 qubits in two spatial dimensions. I will outline how we use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and apply them to systematically explore a class of graphs with programmable connectivity. Next, I will discuss the results of benchmarking the quantum algorithm's performance against classical simulated annealing and explain graph properties that control the problem hardness.  Finally, I will explain our observations of a superlinear quantum speedup on the hardest graphs in finding exact solutions in the deep circuit regime and analyze its origins.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060