Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Tsinghua-BIMSA Computational & Applied Mathematics (CAM) Seminar An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems
An essentially oscillation-free discontinuous Galerkin method for hyperbolic systems
Organizers
Jie Du , Computational & Applied Mathematics Group , Hui Yu
Speaker
Yong Liu
Time
Friday, November 19, 2021 8:00 AM - 9:00 AM
Online
Tencent 829 760 836 ()
Abstract
In this talk, we introduce an essentially oscillation-free discontinuous Galerkin (OFDG) method for systems of hyperbolic conservation laws. Based on the standard discontinuous Galerkin (DG) method, the numerical damping terms are introduced so as to control the spurious oscillations. We use both the classical Runge-Kutta method and the modified exponential Runge-Kutta method in time discretization. Particularly,the latter one could avoid additional restrictions of time step size due to the numerical damping. Extensive numerical experiments are shown to demonstrate our algorithm is robust and effective.
Speaker Intro
中国科学院数学与系统科学研究院,华罗庚数学中心博士后。分别于2015年,2020年获中国科学技术大学学士和博士学位。2018年--2020年在美国布朗大学应用数学系联合培养。主要研究领域为高精度数值计算方法,包括间断有限元方法的算法设计及其数值分析、磁流体力学方程的数值模拟及应用等方面。在SIAM Journal on Numerical Analysis, Journal of Computational Physics, Journal of Scientific Computing 等杂志发表论文10余篇。
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060