Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Category and Topological Order Seminar Emergent space-time meets emergent quantum phenomena
Emergent space-time meets emergent quantum phenomena
Organizer
Hao Zheng
Speaker
Jinwu Ye
Time
Tuesday, September 20, 2022 1:30 PM - 3:00 PM
Venue
1131
Online
Tencent 607 3645 0351 ()
Abstract
P.W. Anderson said " More is different ". It says the macroscopic quantum phenomena such as superfluids, superconductors, quantum anti-ferromagnetism, fractional quantum Hall states, etc emerge as the number of interacting particles gets more and more. However, he left the question how these emergent quantum or topological phenomena change under different inertial frames. In this talk, we try to address this outstanding problem. We propose there is an emergent space-time corresponding to any emergent quantum phenomenon, especially near a quantum/topological phase transition (QPT). We explore the emergent space-time in one of the simplest QPTs: Superfluid (SF)-Mott transitions of interacting bosons in a square lattice. By constructing effective actions and performing microscopic calculations on a lattice, we find an counter-intuitive effect: a Mott phase near the QPT may tune into a SF phase, but not the other way around. We also demonstrate several other novel effects of observing emergent quantum phenomena in a different inertial frame. Contrast to the Doppler shifts in a relativistic quantum field theory and Unruh effects in an accelerating observer are made. Doing various light or neutron scattering measurements in a moving sample may become an effective way not only measure various intrinsic properties of the materials, tune various quantum and topological phases through novel phase transitions, but also probe the new emergent space-time structure near any QPT.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060