Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Applied Analysis Seminar Stochastic homogenization for reaction-diffusion equations and G-equations
Stochastic homogenization for reaction-diffusion equations and G-equations
Organizer
Wenjia Jing
Speaker
Yuming Paul Zhang
Time
Friday, March 4, 2022 2:00 PM - 4:30 PM
Venue
1110
Online
Zoom 388 528 9728 (BIMSA)
Abstract
Homogenization is a general phenomenon when physical processes in periodic or random environments exhibit homogeneous long time dynamics due to large space averaging of the variations in the environment. While this area of Mathematics saw a slew of remarkable developments in the last 20 years, the progress in the case of reaction-diffusion equations, which model many important physical phenomena, has been somewhat limited due to the homogenized dynamic involving discontinuous solutions to different (first-order) equations. In this talk I will discuss the first proofs of homogenization for reaction-diffusion equations with random not necessarily isotropic reactions in several spatial dimensions. These include the cases of both time-independent and time-dependent reactions, with the later proof employing a new subadditive ergodic theorem for time-dependent environments. We obtain analogous results for G-equations with random flame speeds and incompressible background advections. This talk is based on joint works with Andrej Zlatoš.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060