Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Applied Analysis Seminar Homogenization of Linear Elliptic Equations in Nondivergence-Form: Characterizations of Good Diffusion Matrices
Homogenization of Linear Elliptic Equations in Nondivergence-Form: Characterizations of Good Diffusion Matrices
Organizer
Wen Jia Jing
Speaker
Timo Sprekeler
Time
Friday, January 7, 2022 2:00 PM - 3:00 PM
Venue
1110
Online
Zoom 388 528 9728 (BIMSA)
Abstract
In this talk, we discuss the periodic homogenization of linear elliptic equations of the form $-A(x/\varepsilon):D^2 u^{\varepsilon} = f$ subject to a Dirichlet boundary condition. We characterize good diffusion matrices $A$, i.e., those for which the sequence of solutions converges at a rate of $\mathcal{O}(\varepsilon^2)$ in the $L^{\infty}$-norm to the solution of the homogenized problem. Such diffusion matrices are considered “good” as the optimal rate of convergence in the generic case is only $\mathcal{O}(\varepsilon)$. First, we provide a class of good diffusion matrices, confirming a conjecture posed by Guo and Tran in 2020. Then, we give a complete characterization of diagonal diffusion matrices in two dimensions and a systematic study in higher dimensions. This talk is based on joint work with Xiaoqin Guo (University of Cincinnati) and Hung V. Tran (University of Wisconsin Madison).
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060