Metric geometry on Grothendieck groups in symplectic geometry
Organizer
Speaker
Jun Zhang
Time
Wednesday, April 10, 2024 1:30 PM - 3:30 PM
Venue
A3-1-101
Online
Zoom 928 682 9093
(BIMSA)
Abstract
In this talk, we will introduce a new method to carry out quantitative studies on the Grothendieck group of a derived Fukaya category. This fits into a bigger algebraic framework called triangulated persistence category (TPC). This category unites the persistence module structure (from topological data analysis) and the classical triangulated structure so that a meaningful measurement, via cone decomposition, can be defined on the set of objects. In particular, a TPC structure allows us to define non-trivial pseudo-metrics on its Grothendieck group, which is the first time that people can study a Grothendieck group in terms of the metric geometry. Finally, we will illustrate how to use this method to distinguish classes from the Grothendieck group (of a derived Fukaya category) from a quantitative perspective. This is based on joint work with Paul Biran and Octav Cornea.