Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA-YMSC Tsinghua Number Theory Seminar Kolyvagin’s conjecture and Iwasawa theory
Kolyvagin’s conjecture and Iwasawa theory
Organizers
Hansheng Diao , Yueke Hu , Emmanuel Lecouturier , Cezar Lupu
Speaker
Giada Grossi
Time
Monday, April 22, 2024 10:00 AM - 11:00 AM
Venue
Shuangqing-B627
Abstract
Let $E$ be a rational elliptic curve and $p$ be an odd prime of good ordinary reduction for $E$. In 1991 Kolyvagin conjectured that the system of cohomology classes derived from Heegner points on the $p$-adic Tate module of $E$ over an imaginary quadratic field $K$ is non-trivial. I will talk about joint work with A.Burungale, F.Castella, and C.Skinner, where we prove Kolyvagin's conjecture in the cases where an anticyclotomic Iwasawa Main Conjecture for $E/K$ is known. Moreover, our methods also yield a proof of a refinement of Kolyvagin's conjecture expressing the divisibility index of the Heegner point Kolyvagin system in terms of the Tamagawa numbers of $E$.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060