Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Algebra Learning Seminar An introduction to Frobenius manifolds and primitive forms III
An introduction to Frobenius manifolds and primitive forms III
Organizer
Yu Qiu
Speaker
Otani Takumi
Time
Monday, November 6, 2023 1:00 PM - 3:00 PM
Venue
A3-1a-205
Abstract
The notion of Frobenius manifold was essentially found by Kyoji Saito, and axiomatized by Dubrovin. Frobenius manifolds play an important role in algebraic geometry, singularity theory and mirror symmetry. Based on mirror symmetry, it is expected that there exists a structure of Frobenius manifold on the space of stability conditions on a certain triangulated category. In particular, we expect that stability conditions for ADE singularity should be given by a period mapping associated to a primitive form. In the lecture series, I will explain the following contents: 1. Basics of Frobenius manifolds. 2. Basics of primitive forms and period mappings associated to it. 3. An (expected) relationship between the space of stability conditions and Frobenius manifold for ADE singularities.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060