Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Administration
    • Academic Support
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Administration
Academic Support
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Quantum Fields and Strings Group Seminar D-commuting SYK model: building quantum chaos from integrable blocks
D-commuting SYK model: building quantum chaos from integrable blocks
Organizers
Kimyeong Lee , Antons Pribitoks
Speaker
Peng Cheng
Time
Thursday, May 29, 2025 2:55 PM - 4:30 PM
Venue
A3-4-301
Online
Zoom 462 110 5973 (BIMSA)
Abstract
We construct a new family of quantum chaotic models by combining multiple copies of integrable commuting SYK models. As each copy of the commuting SYK model does not commute with others, this construction breaks the integrability of each commuting SYK and the family of models demonstrates the emergence of quantum chaos. We study the spectrum of this model analytically in the double-scaled limit. As the number of copies tends to infinity, the spectrum becomes compact and equivalent to the regular SYK model. For finite d copies, the spectrum is close to the regular SYK model in UV but has an exponential tail e^{E/T_c} in the IR. We identify the reciprocal of the exponent in the tail as a critical temperature T_c, above which the model should be quantum chaotic. T_c monotonically decreases as d increases, which expands the chaotic regime over the non-chaotic regime. We propose the existence of a new phase around T_c, and the dynamics should be very different in two phases. We further carry out numeric analysis at finite d, which supports our proposal. Given any finite dimensional local Hamiltonian, by decomposing it into d groups, in which all terms in one group commute with each other but terms from different groups may not, our analysis can give an estimate of the critical temperature for quantum chaos based on the decomposition. We also comment on the implication of the critical temperature to future quantum simulations of quantum chaos and quantum gravity.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855 Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060