Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > YMSC-BIMSA Quantum Information Seminar Long-range nonstabilizerness from quantum codes, orders, and correlations
Long-range nonstabilizerness from quantum codes, orders, and correlations
Organizers
Song Cheng , Da Wei Ding , Jin Peng Liu , Zheng Wei Liu , Ziwen Liu
Speaker
Fuchuan Wei
Time
Friday, June 6, 2025 4:00 PM - 5:30 PM
Venue
Shuangqing-B627
Online
Zoom 230 432 7880 (BIMSA)
Abstract
We investigate long-range magic (LRM), defined as nonstabilizerness that cannot be (approximately) erased by shallow local unitary circuits. In doing so, we prove a robust generalization of the Bravyi-König theorem. By establishing connections to the theory of fault-tolerant logical gates on quantum error-correcting codes, we show that certain families of topological stabilizer code states exhibit LRM. Then, we show that all ground states of topological orders that cannot be realized by topological stabilizer codes, such as Fibonacci topological order, exhibit LRM, which yields a "no lowest-energy trivial magic" result. Building on our considerations of LRM, we discuss the classicality of short-range magic from e.g. preparation and learning perspectives, and put forward a "no low-energy trivial magic" (NLTM) conjecture that has key motivation in the quantum PCP context. Our study leverages and sheds new light on the interplay between quantum resources, error correction and fault tolerance, complexity theory, and many-body physics.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060