Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > BIMSA Lecture A new perspective on applying $SL_2(R)$ spectral theory in number theory
A new perspective on applying $SL_2(R)$ spectral theory in number theory
Organizer
Dong Sheng Wu
Speaker
Lasse Grimmelt
Time
Tuesday, January 21, 2025 2:30 PM - 5:00 PM
Venue
A3-3-201
Online
Zoom 388 528 9728 (BIMSA)
Abstract
The spectral theory of automorphic forms finds remarkable applications in analytic number theory. Notably, it is utilised in results concerning the distribution of primes in large arithmetic progressions and in questions on variants of the fourth moment of the zeta function. Traditionally, these problems are addressed by reducing them to sums of Kloosterman sums, followed by either the use of existing black-box results or by-hand application of spectral theory through Kuznetsov's formula. In this presentation, based on joint work with Jori Merikoski, I will introduce an alternative approach that entirely circumvents the need for Kloosterman sums. This approach offers increased flexibility compared to existing black-box methods, without requiring more automorphic understanding. As an application, I will present novel results on correlations of the divisor function in arithmetic progressions and moments of L functions.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060