Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Topics in Representation Theory Non-invertible twisted compactification of class S theory and (B,B,B) branes
Non-invertible twisted compactification of class S theory and (B,B,B) branes
Organizer
Shamil Shakirov
Speaker
Yankun Ma
Time
Monday, January 20, 2025 1:00 PM - 2:30 PM
Venue
A14-201
Online
Zoom 242 742 6089 (BIMSA)
Abstract
We study non-invertible twisted compactification of class $\mathcal S$ theories on $S^1$: we insert a non-invertible symmetry defect at $S^1$ extending along remaining directions and then compactify on $S^1$. We show that the resulting 3d theory is 3d $\mathcal N=4$ sigma model whose target space is a hyperK\"ahler submanifold of Hitchin moduli space, i.e. a $(B,B,B)$ brane. The $(B,B,B)$ brane is the fixed point set on Hitchin moduli space of a finite subgroup of mapping class group of underlying Riemann surface. We describe the $(B,B,B)$ branes as affine varieties and calculate concrete examples of these $(B,B,B)$ branes for type $A_1$, genus $2$ class $\mathcal S$ theory. This talk is based on 2412.06729.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060