Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Research seminar in Discrete Mathematics Sharp stability for the Brunn-Minkowski inequality for arbitrary sets
Sharp stability for the Brunn-Minkowski inequality for arbitrary sets
Organizer
Benjamin Sudakov
Speaker
Marius Tiba
Time
Tuesday, April 23, 2024 5:05 PM - 6:15 PM
Venue
Online
Online
Zoom 787 662 9899 (BIMSA)
Abstract
The Brunn-Minkowski inequality states that for (open) sets $A$ and $B$ in $R^d$, we have $|A+B|^{1/d} \geq |A|^{1/d}+|B|^{1/d}$. Equality holds if and only if $A$ and $B$ are convex and homothetic sets in $R^d$. In this talk, we present a sharp stability result for the Brunn-Minkowski inequality, concluding a long line of research on this problem. We show that if we are close to equality in the Brunn-Minkowski inequality, then $A$ and $B$ are close to being homothetic and convex, establishing the exact dependency between the three notions of closeness. This is based on joint work with Alessio Figalli and Peter van Hintum.
Speaker Intro
Marius Tiba completed his PhD under the supervision of Béla Bollobás at the University of Cambridge in 2021. From 2022, has been a Titchmarsh research fellow at the Mathematical Institute, University of Oxford. His research focuses on combinatorics and its connections with metric geometry, analysis and combinatorial number theory.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060