Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Research seminar in Discrete Mathematics Hypergraph decompositions and their applications
Hypergraph decompositions and their applications
Organizer
Benjamin Sudakov
Speaker
Peter Keevash
Time
Tuesday, April 16, 2024 5:05 PM - 6:15 PM
Venue
Online
Online
Zoom 787 662 9899 (BIMSA)
Abstract
Many combinatorial objects can be thought of as a hypergraph decomposition, i.e. a partition of (the edge set of) one hypergraph into (the edge sets of) copies of some other hypergraphs. For example, a Steiner Triple System is equivalent to a decomposition of a complete graph into triangles. In general, Steiner Systems are equivalent to decompositions of complete uniform hypergraphs into other complete uniform hypergraphs (of some specified sizes). The Existence Conjecture for Combinatorial Designs, which I proved in 2014, states that, bar finitely many exceptions, such decompositions exist whenever the necessary `divisibility conditions' hold. I also obtained a generalisation to the quasirandom setting, which implies an approximate formula for the number of designs; in particular, this resolved Wilson's Conjecture on the number of Steiner Triple Systems. A more general result that I proved in 2018 on decomposing lattice-valued vectors indexed by labelled complexes provides many further existence and counting results for a wide range of combinatorial objects, such as resolvable designs (the generalised form of Kirkman's Schoolgirl Problem), whist tournaments or generalised Sudoku squares. In this talk, I plan to illustrate these results and discuss some recent and ongoing developments.
Speaker Intro
Peter Keevash is a Professor of Mathematics at the University of Oxford and a Fellow of Mansfield College. He has also held positions at Queen Mary University of London and California Institute of Technology, and received degrees from Cambridge and Princeton. His research is in Combinatorics and is best known for his solution to the Existence Conjecture for Combinatorial Designs. He received the European Prize in Combinatorics in 2009 and the Whitehead Prize in 2015, and was a speaker at the 2018 International Congress of Mathematicians.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060