Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Research seminar in Discrete Mathematics Partitioning a tournament into sub-tournaments of high connectivity
Partitioning a tournament into sub-tournaments of high connectivity
Organizer
Benjamin Sudakov
Speaker
Antonio Girao
Time
Tuesday, February 20, 2024 5:05 PM - 6:15 PM
Venue
Online
Online
Zoom 787 662 9899 (BIMSA)
Abstract
A classical result of Hajnal and Thomassen asserts that for every$k$ there exists $K$ such that the vertices of every $K$-connected graph can be partitioned into two sets inducing $k$-connected subgraphs. Moreover they showed $K=O(k)$. There is now a whole area of combinatorial problems concerned with questions of this type; namely, to understand whether for a certain (di)graph property any (di)graph which $\textit{strongly}$ satisfies that property has a vertex-partition into many parts where each part still has the property. K\"uhn, Osthus and Townsend proved the analogous result of Hajnal and Thomassen but in the tournament setting. More precisely, they showed that every tournament which is $f(k,t)$-strongly-connected can be partitioned into $t$ parts such that each part is $k$-strongly connected. In this talk, we will discuss a recent result jointly with Shoham Letzter where we show $f(k,t)=O(kt)$ which is best possible and resolves a conjecture of the said authors. Short bio: Antonio Girao obtained his PhD at Cambridge under the supervision of Bela Bollobas. He has since then been a postdoc working with Daniela Kuhn and Deryk Osthus at Birmingham, with Felix Joos at Heidelberg and currently he is based at Oxford working with Alex Scott and Peter Keevash. His research is focused on extremal and probabilistic combinatorics, Ramsey theory and random graphs.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060