Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Maximum Correntropy Ensemble Kalman Filter
Maximum Correntropy Ensemble Kalman Filter
Organizer
Shing Toung Yau
Speaker
Yangtianze Tao
Time
Tuesday, January 10, 2023 9:30 PM - 10:00 PM
Venue
Online
Abstract
In this presentation, a robust ensemble Kalman filter (EnKF) called MC-EnKF is proposed for nonlinear state-space model to deal with filtering problems with non-Gaussian observation noises. Our MC-EnKF is derived based on maximum correntropy criterion (MCC) cost function with some technical approximations. Moreover, we propose an effective adaptive strategy for kernel bandwidth selection. Besides, the relations between the common EnKF and MC-EnKF are given, i.e., MC-EnKF will converge to the common EnKF when the kernel bandwidth tends to infinity. This justification provides a complementary understanding of the kernel bandwidth selection for MC-EnKF. In experiments, non-Gaussian observation noises significantly reduce the performance of the common EnKF for both linear and nonlinear systems, whereas our proposed MC-EnKF with a suitable kernel bandwidth maintains its good performance at only a marginal increase in computing cost, demonstrating its robustness and efficiency to non-Gaussian observation noises.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060