Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Chandrasekhar-based Maximum Correntropy Kalman Filtering with the Adaptive Kernel Size Selection
Chandrasekhar-based Maximum Correntropy Kalman Filtering with the Adaptive Kernel Size Selection
Organizer
Shing Toung Yau
Speaker
Yangtianze Tao
Time
Friday, November 10, 2023 9:30 PM - 10:00 PM
Venue
Online
Abstract
In this presentation, we shall introduce the Chandrasekhar-type recursion for the maximum correntropy criterion (MCC) Kalman filtering (KF). For the classical KF, the first Chandrasekhar difference equation was proposed at the beginning of 1970s. This is the alternative to the traditionally used Riccati recursion and it yields the so-called fast implementations known as the Morf-Sidhu-Kailath-Sayed KF algorithms. They are proved to be computationally cheap because of propagating the matrices of a smaller size than n × n error covariance matrix in the Riccati recursion. The problem of deriving the Chandrasekhar-type recursion within the MCC estimation methodology has never been raised yet in engineering literature. In this technical note, we do the first step and derive the Chandrasekhar MCC-KF estimators for the case of adaptive kernel size selection strategy, which implies a constant scalar adjusting weight. Numerical examples substantiate a practical feasibility of the newly suggested MCC-KF implementations and correctness of the presented theoretical derivations.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060