Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering A Multivariate Non-Gaussian Bayesian Filter Using Power Moments
A Multivariate Non-Gaussian Bayesian Filter Using Power Moments
Organizer
Shing Toung Yau
Speaker
Jia Yi Kang
Time
Friday, November 17, 2023 9:30 PM - 10:00 PM
Venue
Online
Abstract
I will report a paper on Power Moments method for Multivariate filtering system. Doing this introduces several challenging problems, for example a positive parametrization of the density surrogate, which is not only a problem of filter design, but also one of the multiple dimensional Hamburger moment problem. They propose a parametrization of the density surrogate with the proofs to its existence, Positivstellensatz and uniqueness. Based on it, they analyze the errors of moments of the density estimates by the proposed density surrogate. A discussion on continuous and discrete treatments to the non-Gaussian Bayesian filtering problem is proposed to motivate the research on continuous parametrization of the system state. Simulation results are given to validate our proposed filter. To the best of our knowledge, the proposed filter is the first one implementing the multivariate Bayesian filter with the system state parameterized as a continuous function, which only requires the true states being Lebesgue integrable with first several orders of power moments being finite.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060