Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering On the Stable Cholesky Factorization-based Method for the Maximum Correntropy Criterion Kalman Filtering
On the Stable Cholesky Factorization-based Method for the Maximum Correntropy Criterion Kalman Filtering
Organizer
Shing Toung Yau
Speaker
Yangtianze Tao
Time
Friday, December 1, 2023 9:30 PM - 10:00 PM
Venue
Online
Abstract
In this presentation, we shall introduce the research devoted to the design of numerically stable square-root implementations for the maximum correntropy criterion Kalman filtering (MCC-KF). In contrast to the previously obtained results, the first robust (with respect to round-off errors) method within the Cholesky factorization-based approach is revealed. The method is formulated in terms of square-root factors of the covariance matrices, i.e. it belongs to the covariance-type filtering methodology. Additionally, a numerically stable orthogonal transformation is utilized at each iterate of the algorithm for accurate propagation of the Cholesky factors involved. The results of numerical experiments illustrate a superior performance of the novel MCCKF implementation compared to both the conventional algorithm and its previously published Cholesky-based variant.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060