Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Finite Expression Method for Solving High-Dimensional PDEs
Finite Expression Method for Solving High-Dimensional PDEs
Organizer
Shing Toung Yau
Speaker
Jia Yi Kang
Time
Friday, January 5, 2024 9:30 PM - 10:00 PM
Venue
Online
Abstract
Learning high-dimensional functions (e.g., solving high-dimensional partial differential equations (PDEs) and discovering governing PDEs) is fundamental in scientific fields such as diffusion, fluid dynamics, and quantum mechanics, and optimal control, etc. Developing efficient and accurate solvers for this task remains an important and challenging topic. Traditional solvers (e.g., finite element method (FEM) and finite difference) are usually limited to low-dimensional domains since the computational cost increases exponentially in the dimension as the curse of dimensionality. Neural networks (NNs) as mesh-free parameterization are widely employed in solving regression problems and high-dimensional PDEs. Yet the highly non-convex optimization objective function in NN optimization makes it difficult to achieve high accuracy. The errors of NN-based solvers would still grow with the dimension. Besides, NN parametrization may still require large memory and high computation cost for high-dimensional problems. Finally, numerical solutions provided by traditional solvers and NN-based solvers are not interpretable, e.g., the dependence of the solution on variables cannot be readily seen from numerical solutions. The key to tackle these issues is to develop symbolic learning to discover the low-complexity structures of a high-dimensional problem. Low-complexity structures are applied to transform a high-dimensional task into a low-dimensional learning problem.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060