Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Importance Sampling for Rare Event Tracking within the Ensemble Kalman Filtering Framework
Importance Sampling for Rare Event Tracking within the Ensemble Kalman Filtering Framework
Organizer
Shing Toung Yau
Speaker
Zeju Sun
Time
Wednesday, March 27, 2024 2:30 PM - 3:00 PM
Venue
理科楼A-304
Abstract
We will review and discuss the paper entitled ‘Importance Sampling for Rare Event Tracking within the Ensemble Kalman Filtering Framework’ by N. B. Rached et al. The abstract of this paper is as follows: ‘In this work we employ importance sampling (IS) techniques to track a small over-threshold probability of a running maximum associated with the solution of a stochastic differential equation (SDE) within the framework of ensemble Kalman filtering (EnKF). Between two observation times of the EnKF, we propose to use IS with respect to the initial condition of the SDE, IS with respect to the Wiener process via a stochastic optimal control formulation, and combined IS with respect to both initial condition and Wiener process. Both IS strategies require the approximation of the solution of Kolmogorov Backward equation (KBE) with boundary conditions. In multidimensional settings, we employ a Markovian projection dimension reduction technique to obtain an approximation of the solution of the KBE by just solving a one dimensional PDE. The proposed ideas are tested on two illustrative examples: Double Well SDE and Langevin dynamics, and showcase a significant variance reduction compared to the standard Monte Carlo method and another sampling-based IS technique, namely, multilevel cross entropy.
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060