Beijing Institute of Mathematical Sciences and Applications Beijing Institute of Mathematical Sciences and Applications

  • About
    • President
    • Governance
    • Partner Institutions
    • Visit
  • People
    • Management
    • Faculty
    • Postdocs
    • Visiting Scholars
    • Staff
  • Research
    • Research Groups
    • Courses
    • Seminars
  • Join Us
    • Faculty
    • Postdocs
    • Students
  • Events
    • Conferences
    • Workshops
    • Forum
  • Life @ BIMSA
    • Accommodation
    • Transportation
    • Facilities
    • Tour
  • News
    • News
    • Announcement
    • Downloads
About
President
Governance
Partner Institutions
Visit
People
Management
Faculty
Postdocs
Visiting Scholars
Staff
Research
Research Groups
Courses
Seminars
Join Us
Faculty
Postdocs
Students
Events
Conferences
Workshops
Forum
Life @ BIMSA
Accommodation
Transportation
Facilities
Tour
News
News
Announcement
Downloads
Qiuzhen College, Tsinghua University
Yau Mathematical Sciences Center, Tsinghua University (YMSC)
Tsinghua Sanya International  Mathematics Forum (TSIMF)
Shanghai Institute for Mathematics and  Interdisciplinary Sciences (SIMIS)
BIMSA > Seminar on Control Theory and Nonlinear Filtering Twisted Particle Filter
Twisted Particle Filter
Organizer
Shing Toung Yau
Speaker
Zeju Sun
Time
Wednesday, September 25, 2024 8:00 PM - 9:00 PM
Venue
Online
Abstract
In this talk, I will review a paper discussing the twisted particle filter. The abstract of this paper is: “The particle filter (PF), also known as the sequential Monte Carlo (SMC), is designed to approximate high-dimensional probability distributions and their normalizing constants in the discrete-time setting. To reduce the variance of the Monte Carlo approximation, several twisted particle filters (TPF) have been proposed by researchers, where one chooses or learns a twisting function that modifies the Markov transition kernel. In this paper, we study the TPF from a continuous-time perspective. Under suitable settings, we show that the discrete-time model converges to a continuous-time limit, which can be solved through a series of well-studied control-based importance sampling algorithms. This discrete-continuous connection allows the design of new TPF algorithms inspired by established continuous-time algorithms. As a concrete example, guided by existing importance sampling algorithms in the continuous-time setting, we propose a novel algorithm called “Twisted-Path Particle Filter” (TPPF), where the twist function, parameterized by neural networks, minimizes specific KL divergence between path measures. Some numerical experiments are given to illustrate the capability of the proposed algorithm.”
Beijing Institute of Mathematical Sciences and Applications
CONTACT

No. 544, Hefangkou Village Huaibei Town, Huairou District Beijing 101408

北京市怀柔区 河防口村544号
北京雁栖湖应用数学研究院 101408

Tel. 010-60661855
Email. administration@bimsa.cn

Copyright © Beijing Institute of Mathematical Sciences and Applications

京ICP备2022029550号-1

京公网安备11011602001060 京公网安备11011602001060